whisper使用方法

在这里插入图片描述

看这个 github

https://github.com/Purfview/whisper-standalone-win/tags

下载

视频提取音频
ffmpeg -i 222.mp4 -vn -b:a 128k -c:a mp3 output.mp3

截取4秒后的音频 
ffmpeg -i output.mp3 -ss 4 -c copy output2.mp3

使用 whisper-faster.exe  生成字幕 

whisper-faster.exe C:\Users\pc\Videos\Captures\output3.mp3 -l=Chinese --model=medium --output_format srt

缺少插件解决方法

cudnn_ops_infer64_8.dll 
cublasLt64_11.dll
cublasLt64_12.dll
下载这个
cuBLAS.and.cuDNN_win_v3.zip

完整目录形式
在这里插入图片描述

生成srt

1
00:00:00,920 --> 00:00:02,000
其實這兩年

2
00:00:02,680 --> 00:00:03,680
在電影方面

3
00:00:03,680 --> 00:00:06,360
其實都是想嘗試一些
### 使用 Whisper 进行 GPU 加速的语音转文字处理 Whisper 是由 OpenAI 开发的一个开源自动语音识别 (ASR) 工具,能够高效地将语音转换为文本。为了利用 GPU 提升性能,在安装和配置过程中需要注意一些特定设置。 #### 安装依赖项 首先需要确保 Python 和 PyTorch 的环境已正确配置支持 GPU。可以通过以下命令安装必要的包: ```bash pip install git+https://github.com/openai/whisper.git pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # 替换 cu118 为你实际使用的 CUDA 版本号 ``` 上述命令会安装最新版本的 `whisper` 库以及带有 GPU 支持的 PyTorch[^4]。 #### 配置 GPU 加速 PyTorch 自动检测可用的 GPU 并分配计算资源到它们上面。如果硬件设备兼容并成功加载了 CUDA,则无需额外修改代码即可启用 GPU 计算。可以运行如下脚本来验证当前环境中是否存在有效的 GPU 设备: ```python import torch if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' print(f'Using {device} for inference.') ``` 当确认有可用的 NVIDIA 显卡时,后续所有的张量操作都会默认迁移到该显存空间执行从而加速运算过程[^2]。 #### 调用 Whisper API 实现 STT 功能 下面展示了一个简单的例子来说明如何使用预训练好的 Whisper 模型完成从本地文件读取音频流直至输出对应的文字描述整个流程: ```python import whisper model_name = "base" # 可选参数:"tiny", "small", "medium", or "large" model = whisper.load_model(model_name).to('cuda') # 将模型移动至 GPU 上面 audio_path = "./example.wav" # 输入待解析的声音片段路径名字符串形式表示 result = model.transcribe(audio_path) print(result["text"]) ``` 这里通过 `.to('cuda')` 方法把神经网络实例转移到图形处理器内存区域以便充分利用其强大的浮点数计算能力加快推理速度[^3]。 #### 性能优化建议 - **选择合适的模型大小**:不同规模的 Whisper 模型在精度与效率之间存在权衡关系,请依据具体应用场景需求挑选适合自己的选项。 - **批量处理输入样本**:对于大批量连续性的音讯资料来说,采用批次方式提交请求往往可以获得更好的吞吐表现。 - **调整采样率**:某些情况下重新设定原始信号频率可能有助于改善最终效果质量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值