文章目录
1、简介
https://github.com/SYSTRAN/faster-whisper
https://pypi.org/project/faster-whisper/
Faster-Whisper是Whisper开源后的第三方进化版本,它对原始的 Whisper 模型结构进行了改进和优化。
faster-whisper 是使用 CTranslate2 重新实现 OpenAI 的 Whisper 模型,CTranslate2 是 Transformer 模型的快速推理引擎。
此实现比 openai/whisper 快 4 倍,同时使用更少的内存实现相同的准确性。通过对 CPU 和 GPU 进行 8 位量化,可以进一步提高效率。
1.1 CTranslate2
https://github.com/OpenNMT/CTranslate2/
CTranslate2 是一个 C++ 和 Python 库,用于使用 Transformer 模型进行高效推理。
该项目实现了一个自定义运行时,该运行时应用了许多性能优化技术,例如权重量化、层融合、批量重新排序等,以加速和减少 Transformer 模型在 CPU 和 GPU 上的内存使用。
CTranslate2 可以用 pip 安装:
pip install ctranslate2
1.2 Intel MKL
获取英特尔® oneAPI 数学核心函数库 (oneMKL)
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/onemkl-download.html
CTranslate2 的核心是其高度优化的模型推理实现。它支持多种硬件平台,包括 CPU 和 GPU,并利用了底层的并行计算库如 Intel MKL 或者 cuDNN 来最大化性能。
1.3 cuDNN
https://developer.nvidia.com/cudnn
NVIDIA CUDA® 深度神经网络库 (cuDNN) 是用于深度神经网络的 GPU 加速基元库。cuDNN 为标准例程(如前向和后向卷积、注意力、matmul、池化和归一化)提供高度优化的实现。
1.4 Transformer
https://arxiv.org/pdf/1706.03762
目前,自然语言处理中,有三种特征处理器:卷积神经网络、递归神经网络和后起之秀 Transformer。Transformer 风头已经盖过两个前辈,它抛弃了传统的卷积神经网络和递归神经网络,整个网络结构完全是由注意力机制组成。准确地讲,Transformer 仅由自注意力和前馈神经网络组成。
2、下载和安装
2.1 命令行
https://github.com/Purfview/whisper-standalone-win
Whisper & Faster-Whisper 独立可执行文件,适合那些不想打扰 Python 的人。
解压文件夹如下:
测试如下:
whisper-faster.exe "D:\videofile.mkv" --language English --model medium --output_dir source
whisper-faster.exe "D:\videofile.mkv" -l English -m medium -o source --sentence
whisper-faster.exe "D:\videofile.mkv" -l Japanese