多示例论文泛读--Attention-based Deep Multiple Instance Learning

基本概念

  • Permutation Invariant:指的是特征之间没有空间位置关系
  • Pooling(池化):是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合

实例级别: f f f是一个实例级别的分类器,返回值为每个实例的分数, g g g则是判别函数。
嵌入级别: f f f将实例映射为一个低维嵌入;MIL池化用于获取包的表示。

MIL池化

最大池化层:
∀ m = 1 , ⋯   , M : z m = max ⁡ k = 1 , ⋯   , K { h k m } \forall_{m=1, \cdots, M}: z_{m}=\max _{k=1, \cdots, K}\left\{\mathbf{h}_{k m}\right\} m=1,,M:zm=k=1,,Kmax{hkm}

最大池化层:
z = 1 K ∑ k = 1 K h k \mathbf{z}=\frac{1}{K} \sum_{k=1}^{K} \mathbf{h}_{k} z=K1k=1Khk

注意力机制

H = { h 1 , ⋯   , h K } H=\left\{\mathbf{h}_{1}, \cdots, \mathbf{h}_{K}\right\} H={h1,,hK}表示包的嵌入,MIL的嵌入为:
z = ∑ k = 1 K a k h k \mathbf{z}=\sum_{k=1}^{K} a_{k} \mathbf{h}_{k} z=k=1Kakhk
其中:
a k = exp ⁡ { w ⊤ tanh ⁡ ( V h k ⊤ ) } ∑ j = 1 K exp ⁡ { w ⊤ tanh ⁡ ( V h j ⊤ ) } a_{k}=\frac{\exp \left\{\mathbf{w}^{\top} \tanh \left(\mathbf{V} \mathbf{h}_{k}^{\top}\right)\right\}}{\sum_{j=1}^{K} \exp \left\{\mathbf{w}^{\top} \tanh \left(\mathbf{V h}_{j}^{\top}\right)\right\}} ak=j=1Kexp{wtanh(Vhj)}exp{wtanh(Vhk)}

门控注意力机制:
a k = exp ⁡ { w ⊤ tanh ⁡ ( V h k ⊤ ) } ⊙ sigm ⁡ ( U h k ⊤ ) ∑ j = 1 K exp ⁡ { w ⊤ tanh ⁡ ( V h j ⊤ ) } ⊙ sigm ⁡ ( U h j ⊤ ) , a_{k}=\frac{\exp \left\{\mathbf{w}^{\top} \tanh \left(\mathbf{V} \mathbf{h}_{k}^{\top}\right)\right\} \odot \operatorname{sigm}\left(\mathbf{U h}_{k}^{\top}\right)}{\sum_{j=1}^{K} \exp \left\{\mathbf{w}^{\top} \tanh \left(\mathbf{V} \mathbf{h}_{j}^{\top}\right)\right\} \odot \operatorname{sigm}\left(\mathbf{U h}_{j}^{\top}\right)}, ak=j=1Kexp{wtanh(Vhj)}sigm(Uhj)exp{wtanh(Vhk)}sigm(Uhk),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值