【论文阅读】Multiple Instance Learning with Emerging Novel Class 通过应用多实例学习(MIL)算法,解决了涉及蛋白质和图像等复杂数据对象的各种应用。然而,在开放和动态的环境中,很少有MIL算法能够处理出现新类别样本的问题。在这种新兴的新型类别设置中,算法不仅要能够准确地从观察到的类别中分类出样本,而且要能够从新类别中识别出样本。本文针对多示例学习中出现的新类别Novel class(MIEN)问题,从度量学习的角度给出了MIEN的定义。
【论文阅读】An Iterative Instance Selection Based Framework for Multiple-Instance Learning 题目An Iterative Instance Selection Based Framework for Multiple-Instance Learning一种基于迭代实例选择的多示例学习框架2018 IEEE 30th International Conference on Tools with Artificial Intelligence -C摘要基于实例选择的模型是一种有效的多示例学习(MIL)框架,它通过将示例(实例包)嵌入到由一些概念(由一些选定实例表示)形成的新特征空间中来解决
【】集成学习 集成学习集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifier svstem).一般结构:先产生一组“个体学习器”(individual learner),再用某种策略将它们结合起来.个体学习器通常由一个现有的学习算法从训练数据产生.例如决策树算法、BP神经网络算法等。“同质”(homogeneous)集成:集成中只包含同种类型的个体学习器,例如“决策树集成”中全是决策树,“神经网络集成”中全是神经网络.同质集成中
【论文阅读】2017-1-An ensemble approach to multi-view multi-instance learning 题目An ensemble approach to multi-view multi-instance learning一种多视图多实例学习的集成方法2017-KBS摘要多视图学习结合了来自多个异构来源的数据,并利用它们的互补信息来构建更准确的模型。多实例学习将示例表示为包含实例集的标记包。由于基数和特征空间不同,不同多实例视图的数据融合不能简单地串联成一组特征。本文提出了一种集成方法,该方法结合了视图学习器并在加权类预测之间寻求共识,以利用来自多个视图的互补信息。重要的是,集成必须处理来自每个
【论文阅读】Isolation Set-Kernel and Its Application to Multi-Instance Learning 题目Isolation Set-Kernel and Its Application to Multi-Instance Learning隔离集核及其在多示例学习中的应用SIGKDD international conference on knowledge discovery & data mining CCF-A摘要集合级问题与实例级问题一样重要。解决集合级问题的核心是:如何衡量两个集合之间的相似度。本文研究了直接从数据派生的数据相关内核。我们引入了完全依赖于数据分布的 Isolati
日撸Java三百行:AdaBoost 集成学习集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifier svstem).一般结构:先产生一组“个体学习器”(individual learner),再用某种策略将它们结合起来.个体学习器通常由一个现有的学习算法从训练数据产生.例如决策树算法、BP神经网络算法等,“同质”(homogeneous)集成:集成中只包含同种类型的个体学习器,例如“决策树集成”中全是决策树,“神经网络集成”中全是神经网络.同质集成中
【论文阅读】CCF-A Multi-Instance Learning with Key Instance Shift 标题Multi-Instance Learning with Key Instance Shift具有关键实例转移的多实例学习会议:IJCAI摘要多示例学习 (MIL) 处理每个示例由一组实例表示的任务。如果一个包至少包含一个正实例,则它是正实例,否则为负实例。正面实例也称为关键实例。仅观察到袋子标签,而 MIL 中没有特定的实例标签。以前的研究通常假设训练和测试数据遵循相同的分布,这在许多现实世界的任务中可能会被违反。在本文中,我们解决了关键实例的分布在训练和测试阶段之间变化的问题。我们将此问题
【论文阅读】2018-2 Multi-instance Learning with Discriminative Bag Mapping 题目Multi-instance Learning with Discriminative Bag Mapping具有判别包映射的多示例学习2018 IEEE Transactions on Knowledge and Data Engineering摘要多示例学习 (MIL) 是解决学习中标签模糊问题的有用工具,因为它允许一组实例共享一个标签。包映射通过实例选择将包转换为新空间中的单个实例,最近引起了广泛关注。迄今为止,大多数现有工作都基于原始空间,使用所有实例进行包映射,并且所选实例不直接与
多示例神经网络 一、名词神经网络由多个layer(单层)组成,一层可以叫做一个transformation,每一层对应参数matrix二、训练过程一个1×d1 \times d1×d的样本经过网络训练得到d×Ld\times Ld×L参数ω\omegaω,通过f(x)=ωxf(x)=\omega xf(x)=ωx得到1×L1 \times L1×L的标签向量设yyy为真实标签,y^=ωx\hat{y}=\omega xy^=ωx为预测标签损失函数:loss=y^−yloss=\hat{y}-yloss=y^
数学表达式学习 相关同一篇论文中的符号系统应保证一致性、完备性从一而终、统一风格, 不再受其它文献的影响提 "XXX 公式"的时候, 提出者必须是大数学家标量:xxx向量:x\mathbf{x}x \mathbf 、x\bm{x}x \bm、x\boldsymbol{x}x \boldsymbol矩阵、集合:X\mathbf{X}X向量转置:xT\mathbf{x}^{\mathrm{T}}xT \mathbf{x}^{\mathrm{T}}1.集合的表示与运算1.1集合的表示枚举法Ω={a,b
【论文阅读】Multi-Instance Ensemble Learning With Discriminative Bags 摘要多实例学习 (MIL) 比传统的监督学习更具通用性和挑战性,因为标签是在包级别给出的。流行的特征映射方法将每个包转换为新特征空间中的一个实例。但是大部分都很难保持包的可区分性,MIL模型不支持自增强。在本文中,我们提出了带有判别袋的多实例集成学习 (ELDB) 算法和两种新技术。包选择技术根据两部分得到一个判别包集(dBagSet)。首先,考虑数据的空间和标签分布,通过判别分析优化包选择过程,得到基本的dBagSet。其次,通过状态和动作转移策略,通过自我强化得到可区分性更好的dbagSet。集成技
【论文阅读】Attention-based Deep Multiple Instance Learning 题目:CCF A-Loss-Based Attention for Deep Multiple Instance LearningInternational conference on machine learning摘要多实例学习 (MIL) 是监督学习的一种变体,其中将单个类标签分配给一袋实例。在本文中,我们将 MIL 问题描述为学习包标签的伯努利分布,其中包标签概率由神经网络完全参数化。此外,我们提出了一种基于神经网络的置换不变聚合算子,它对应于注意机制。值得注意的是,所提出的基于注意力的算子
【论文阅读】2018-A Selective Multiple Instance Transfer Learning Method for Text Categorization Problems 摘要多实例学习 (MIL) 是监督学习的推广,它试图从实例包中学习一个独特的分类器。本文解决了文本分类问题的基于迁移学习的多实例方法的问题。为了提供从源任务到目标任务的知识安全迁移,本文提出了一种新方法,称为选择性多实例迁移学习(SMITL),它选择多实例迁移学习将在第一步中工作的情况,并且然后在第二步中构建一个多实例迁移学习分类器。具体来说,在第一步中,我们通过调查两个任务的积极特征的相似性来衡量源任务和目标任务是否相关。在第二步中,我们构建了一种基于迁移学习的多实例方法,如果在第一步中发现两个任务
【论文泛读】2018-1-Fast Multi-Instance Multi-Label Learning 题目快速多实例多标签学习(Fast Multi-Instance Multi-Label Learning)Bib@article{Huang:2018:26142627, title={Fast multi-instance multi-label learning}, author={Sheng Jun Huang and Wei Gao and Zhi Hua Zhou}, journal={{IEEE} transactions on pattern analysis and ma