一、一般的设计步骤
(1)在连续系统控制器与被控对象之间插入保持器,比如零阶保持器ZOH,检查插入后的连续系统是否稳定,如不稳定,则重新设计控制器D(s)
(2)选择合适的方法将D(s)离散化为D(z)
(3)对G(s) = ZOH*H(s)离散化,D(s)和G(z)共同构成离散系统。此时检查离散系统的特性是否满足要求,如不满足就重新设计D(s)
(4)用数字算法(编程)实现控制器D(z),即用差分方程表示D(z)
二、如何离散化D(s)为D(z)
(1)数值积分法
- 基本思想 -
A、前向矩形法
主要特性
- 【i】s域和z域为平移伸缩关系
由于 z = 1 + Ts,想当于将s域伸缩T倍,再向左平移1个单位长度; - 【ii】不能保证z域的稳定性
上述映射关系带来的问题是即使D(s)在s域稳定(极点全位于s左半平面),D(z)在z域也不一定能稳定(极点位于单位圆内):
- 【iii】变换前后,稳态增益不变,即:
B、后向矩形法
主要特性
- 【i】s域左半平面映射为z域的小圆 |z-1/2|2 = 1 内部
- 【ii】 s域虚轴映射为z域的小圆 |z-1/2|2 = 1 圆上
- 【iii】 s域右半平面映射为z域的小圆 |z-1/2|2 = 1 外部
- 【iv】由上述三点,可知D(s)稳定,则D(z)一定稳定
- 【v】变换前后,稳态增益不变,即: