工业机器人工具坐标系(TCF)标定的六点法原理

一、基本步骤

(1)在机器人动作范围内找一个非常精确的固定点作为参考点;
(2)在工具上确定一个参考点(最好是工具中心点Tool Center Point, TCP);
(3)手动操纵机器人的方法移动TCP,以四种不同的工具姿态与固定点刚好碰上。
  前三个点任意姿态,第四点是用工具的参考点垂直于固定点,第五点是工具参考点从固定点向将要设定的TCP的x方向移动,第六点是工具参考点从固定点向将要设定的TCP的在z方向移动,如下图所示:

(4)通过前4个点的位置数据即可计算出TCP的位置,通过后2个点即可确定TCP的姿态

二、标定过程

1、TCP位置标定

  假设取1、2、3、4四个标定点之间相差90°且不在同一平面上,如下图所示:

  给定如下坐标系定义:

【1】基坐标系(0坐标系):B
【2】末端坐标系:E
【3】工具坐标系:T

  给定如下变换矩阵定义:

【1】末端坐标系 E 相对于基坐标系 B的变换关系 : E B T ^{B}_ {E}T EBT
【2】工具坐标系T 相对于末端坐标系 E的变换关系 : T E T ^{E}_ {T}T TET
【3】工具坐标系T 相对于基坐标系 B的变换关系 : T B T ^{B}_ {T}T TBT

  显然可以知道:
E B T ⋅ T E T = T B T (1) ^{B}_ {E}T · ^{E}_ {T}T = ^{B}_ {T}T \tag{1} EBTTET=TBT(1)

  对于选定位置点 i = 1、2、3、4,有:

  【1】 E B T ^{B}_ {E}T EBT不等,设:
E B T = [ E B R i B P E i 0 1 ] (2) ^{B}_ {E}T = \begin{bmatrix} \pmb{^{B}_ {E}R_{i}} & \pmb{^{B}P_ {Ei}}\\ 0 & 1 \\ \end{bmatrix} \tag{2} EBT=[EBRiEBRiEBRi0BPEiBPEiBPEi1](2)
  【2】 T E T ^{E}_ {T}T TET不等,但其位置 E P T ^{E}P_ {T} EPT相等,设:
T E T = [ T E R i E P T 0 1 ] (3) ^{E}_ {T}T = \begin{bmatrix} ^{E}_ {T}R_ {i} & \pmb{^{E}P_ {T}} \\ 0 & \pmb{1} \\ \end{bmatrix} \tag{3} TET=[TERi0EPTEPTEPT111](3)
  【3】 T B T ^{B}_ {T}T TBT 不等,但其位置 E P T ^{E}P_ {T} EPT相等,设:
T B T = [ T B R i B P T 0 1 ] (4) ^{B}_ {T}T = \begin{bmatrix} ^{B}_ {T}R_ {i} & \pmb{^{B}P_ {T}}\\ 0 & 1 \\ \end{bmatrix} \tag{4} T

⼯业机器⼈reLTOOL坐标⽅向_⼯业机器⼈⼯具坐标系TCF标定六点原理 ⼀、基本步骤 (1)在机器⼈动作范围内找⼀个⾮常精确的固定点作为参考点; (2)在⼯具上确定⼀个参考点(最好是⼯具中⼼点Tool Center Point, TCP); (3)⼿动操纵机器⼈的⽅移动TCP,以四种不同的⼯具姿态与固定点刚好碰上。 前三个点任意姿态,第四点是⽤⼯具的参考点垂直于固定点,第五点是⼯具参考点从固定点向将要设定的TCP的x⽅向移动,第六点是⼯具 参考点从固定点向将要设定的TCP的在z⽅向移动,如下图所⽰: (4)通过前4个点的位置数据即可计算出TCP的位置,通过后2个点即可确定TCP的姿态 ⼆、标定过程 1、TCP位置标定 假设取1、2、3、4四个标定点之间相差90°且不在同⼀平⾯上,如下图所⽰: 给定如下坐标系定义: 【1】基坐标系(0坐标系):B 【2】末端坐标系:E 【3】⼯具坐标系:T 给定如下变换矩阵定义: 【1】末端坐标系 E 相对于基坐标系 B的变换关系 :\(^{B}_ {E}T\) 【2】⼯具坐标系T 相对于末端坐标系 E的变换关系 :\(^{E}_ {T}T\) 【3】⼯具坐标系T 相对于基坐标系 B的变换关系 :\(^{B}_ {T}T\) 显然可以知道: $$^{B}_ {E}T · ^{E}_ {T}T = ^{B}_ {T}T \tag{1}$$ 对于选定位置点 i = 1、2、3、4,有: 【1】\(^{B}_ {E}T\)不等,设: \[^{B}_ {E}T = \begin{bmatrix} \pmb{^{B}_ {E}R_{i}} & \pmb{^{B}P_ {Ei}}\\ 0 & 1 \\ \end{bmatrix} \tag{2} \] 【2】\(^{E}_ {T}T\)不等,但其位置\(^{E}P_ {T}\)相等,设: \[^{E}_ {T}T = \begin{bmatrix} ^{E}_ {T}R_ {i} & \pmb{^{E}P_ {T}} \\ 0 & \pmb{1} \\ \end{bmatrix} \tag{3} \] 【3】\(^{B}_ {T}T\) 不等,但其位置\(^{E}P_ {T}\)相等,设: \[ ^{B}_ {T}T = \begin{bmatrix} ^{B}_ {T}R_ {i} & \pmb{^{B}P_ {T}}\\ 0 & 1 \\ \end{bmatrix} \tag{4} \] 关注公式(2)(3)(4)中加粗符号,有: \[ \pmb{^{B}_ {E}R_ {i}} · \pmb{^{E}P_ {T}} + \pmb{^{B}P_ {Ei}} = \pmb{^{B}P_ {T}} \tag{5} \] 在实际中,\(^{B}_ {E}T\) 由机器⼈正解⽅程可以直接测得,因此,我们直接读取四个位置点的姿态\(^{B}_ {E}R_ {i}\)和位置\(^{B}P_ {Ei = 1, 2, 3, 4}\)。假设: \[^{B}_ {E}R_ {1}· ^{E}P_ {T} + ^{B}P_ {E1} = ^{B}P_ {T} \tag{6} \] \[^{B}_ {E}R_ {2}· ^{E}P_ {T} + ^{B}P_ {E2} = ^{B}P_ {T} \tag{7} \] 则,(6) - (7)得: \[(^{B}_ {E}R_ {1} - ^{B}_ {E}R_ {2} )· ^{E}P_ {T} = ^{B}P_ {E2} - ^{B}P_ {E1} \tag{8} \] 同理可得: \[(^{B}_ {E}R_ {2} - ^{B}_ {E}R_ {3} )· ^{E}P_ {T} = ^{B}P_ {E3} - ^{B}P_ {E2} \tag{9} \] \[(^{B}_ {E}R_ {3} - ^{B}_ {E}R_ {4} )· ^{E}P_ {T} = ^{B}P_ {E4} - ^{B}P_ {E3} \tag{10} \] 由(8)(9)(10)可得: \[\begin{bmatrix} ^{B}_ {E}R_ {1} - ^{B}_ {E}R_ {2}\\ ^{B}_ {E}R_ {2} - ^{B}_ {E}R_ {3}\\ ^{B}_ {E}R_ {3} - ^{B}_ {E}R_ {4} \end{bmatrix}· ^{E}P_ {T} = \begin{bmatrix} ^{B}P_ {E2} - ^{B}P_ {E1}\\ ^{B}P_ {E3} - ^{B}P_ {E2}\\ ^{B}P_ {E4} - ^{B}P_ {E3} \end{bmatrix} \tag{11} \]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值