2621 树上距离 (倍增LCA 模板)

2621 树上距离

 

有一棵n个节点的无向树,每条边有一个边权,现在有q次询问,每次询问给出两个点,

求这两个点之间的简单路径上的边权和是多少。

如图所示的数据中:

1号节点和2号节点之间的距离为:2

2号节点和3号节点之间的距离为:2+2+3=7

输入

第1行:两个整数n和q,n表示这棵树的节点个数,q表示查询的次数。(1<=n,q<=1000)

第2行~第n行:每行有三个整数u,v,w,表示u与v之间有一条权值为w的边。(1<=w<=10000)

第n+1行~n+q行:每行有两个正整数x,y,表示要查询的两个点的编号。

输出

第1行-第q行:每行输出一个数,表示那要查询的两点之间的简单路径上的边权和。

输入样例

4 2
2 1 2
4 3 2
1 4 3
1 2
3 2

输出样例

2
7

模板代码:

#include<iostream>
#include<string.h>
#include<math.h>
#include<set>
#include<queue>
#include<stdio.h>
#include<algorithm>
#define LL long long
#define INF 0x3f3f3f3f
#define ull unsigned long long
/*
#ifdef MYHOME
  freopen("input.txt", "r", stdin);
#endif
*/
using namespace std;

const int N = 2e5 + 100;
const int M = 4e5 + 100;

int head[N], edge[M], ver[M], Next[M], tot;

int n, q, x, y, z;

int deep[N], dist[N], dp[N][30], maxst;

void add (int x, int y, int z) {
    ver[++tot] = y;
    edge[tot] = z;
    Next[tot] = head[x];
    head[x] = tot;
}
void init (int x, int pre) {
    deep[x] = deep[ver[pre ^ 1]] + 1;
    dist[x] = dist[ver[pre ^ 1]] + edge[pre];
    dp[x][0] = ver[pre ^ 1];
    for (int i = 1; i <= maxst; i ++) {
        dp[x][i] = dp[dp[x][i - 1]][i - 1];
    }
    for (int i = head[x]; i; i = Next[i]) {
        y = ver[i];
        if(i == (pre ^ 1)) continue;
        init (y, i);
    }
}
int sol_lca(int x, int y) {
    if (deep[x] >= deep[y]) swap(x,y);
    for (int i=maxst; i >= 0; i--) {
        if (deep[dp[y][i]] >= deep[x]) {
            y = dp[y][i];
        }
    }
    if (x == y) return x;
    for (int i=maxst; i >= 0; i--) {
        if (dp[x][i] != dp[y][i]) {
            x = dp[x][i];
            y = dp[y][i];
        }
    }
    return dp[x][0];
}
int main () {
#ifdef MYHOME
    freopen("input.txt", "r", stdin);
#endif
    while (cin >> n >> q) {
        tot = 1;
        memset(head, 0, sizeof(head));
        memset(Next, 0, sizeof(Next));
        memset(deep, 0, sizeof(deep));
        memset(dist, 0, sizeof(dist));
        memset(dp, 0, sizeof(dp));
        maxst = (int)log(n) / log(2) + 2;

        for (int i = 1; i < n; i++) {
            cin >> x >> y >> z;
            add (x, y, z);
            add (y, x, z);
        }

        init(1, 0);

        for (int i = 1; i <= q; i++) {
            cin >> x >> y;
            cout << dist[x] + dist[y] - 2 * dist[sol_lca(x, y)] << endl;
        }
    }
    return  0;
}

THE END;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值