用1,2,...,n表示n个盘子,称为1号盘,2号盘,...。号数大盘子就大。经典的汉诺塔问
题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于
印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小
顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱
子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。我们
知道最少需要移动2^64-1次.在移动过程中发现,有的圆盘移动次数多,有的少 。 告之盘
子总数和盘号,计算该盘子的移动次数.
Input
包含多组数据,首先输入T,表示有T组数据.每个数据一行,是盘子的数目N(1<=N<=60)和盘
号k(1<=k<=N)。
Output
对于每组数据,输出一个数,到达目标时k号盘需要的最少移动数。
Sample Input
2 60 1 3 1
Sample Output
576460752303423488 4
题意分析:其实对于这道题来说就是要理解一点就是的:n个盘子中第k个盘子的移动次数是跟它上面盘子无关的,只跟他下面盘子数有关,关系就是2^(n-k)就是他移动的次数
代码,,也是一道简单的递推
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
long long plate(int n)
{
return n==0? 1:2*plate(n-1);
}
int main()
{
ios::sync_with_stdio(false);
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
long long ans=plate(n-m);
cout<<ans<<endl;
}
return 0;
}