ubantu18.04配置深度学习环境

本文详细介绍了在Ubuntu 18.04上配置深度学习环境的步骤,包括安装CUDA 10.2、cuDNN 7.6.5、Anaconda 5.3.0、PyTorch 1.6.0以及PyCharm Community Edition 2020.2.4。同时,文章还指导如何使用Anaconda创建Python虚拟环境,并管理不同项目的依赖。
摘要由CSDN通过智能技术生成

目录

一、安装cuda_10.2.89_440.33.01_linux

二、安装cudnn-10.2-linux-x64-v7.6.5.32

三、安装Anaconda3-5.3.0-Linux-x86_64

四、安装pytorch1.6.0

五、安装pycharm-community-2020.2.4

六、使用annoconda创建python虚拟环境


一、安装cuda_10.2.89_440.33.01_linux

1、cuda下载链接

选择cuda10.2,Base Installer和下面的两个Patch都需要下载。

2、 在download下载好的文件夹终端运行

sudo sh cuda_10.2.89_440.33.01_linux.run

中间有accept->

​下一步骤在CUDA Installer se Agreement下面的Driver选中按一下Enter使其不选中。

​然后在CUDA Toolkit 10.2按A进入高级选项,使Creat symbolic link from /usr/local/cuda取消。

​(在/usr/local/文件夹下有cuda-10.2的安装文件夹了)

3、然后再次在终端输入,安装补丁,同上:

sudo sh cuda_10.2.1_linux.run
sudo sh cuda_10.2.2_linux.run

4、 设置环境变量

编辑~/.bashrc,在终端输入命令,启用E编辑模式:

sudo vim ~/.bashrc

 进入文件之后按i启动insert模式,在文章的末尾加入以下变量,然后按Esc再输入:wq,保存关闭文件,并返回终端

export PATH=/usr/local/cuda-10.2/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda

然后在终端输入以下命令使修改有效。

source ~/.bashrc

5、测试

在终端输入以下命令:

nvcc --version

若显示cuda10.2版本信息则表示安装成功 。 

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:24:38_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89

二、安装cudnn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值