Kolmogorov–Smirnov test(K-S检验)

本文介绍了Kolmogorov-Smirnov检验(K-S检验),包括K-S统计量的定义,单样本和双样本检验的原理。K-S检验用于判断样本数据是否符合特定理论分布,或两个样本是否来自同一分布。文章还讨论了Kolmogorov分布,并指出使用样本估计的参数进行检验可能导致无效结果。
摘要由CSDN通过智能技术生成

20220502:已经很长时间不用 CSDN 写博客了,今天偶然看到自己以前写的这篇,发现存在一些错误和讲的不清楚的地方,修改一下以免误人子弟。(当然可能改后还是有错的,请读者不要尽信,如果实在不能理解我说的,很可能是我说错了

主要参考资料
(1)https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
(2)https://wenku.baidu.com/view/ccfa573a3968011ca30091d6.html
概述

Kolmogorov–Smirnov statistic

  • 累计分布函数:
    累积分布函数
    其中 I [ − inf ⁡ , x ] I_{[-\inf,x]} I[inf,x] 为indicator function(指示函数),
    I [ − inf ⁡ , x ] ( X i ) = { 1 , X i ≤ x ; 0 , X i > x ; I_{[-\inf,x]}(X_i)=\left\{\begin{matrix} 1,X_i\leq x;\\ 0,X_i> x; \end{matrix}\right. I[inf,x](Xi)={ 1,Xix;0,Xi>x;
  • Kolmogorov–Smirnov statistic:
    对于一个样本集的累计分布函数 F n ( x ) F_n(x) Fn(x)和一个假设的理论分布 F ( x ) F(x) F(x),Kolmogorov–Smirnov statistic定义为:
    Kolmogorov–Smirnov statistic
    s u p x sup_x supx是距离的
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值