-
有效位数运算
间接测量的计算过程即为有效数字的运算过程,存在不确定度的传递问题。严格说来,应根据间接测量的不确定度合成结果来确定运算结果的有效数字。但是在没有进行不确定度估算时,可根据下列的有效数字运算法则粗略地算出结果。
有效数字运算总的原则是:运算结果只保留一位(最多两位)欠准确数字。为了表述方便记函数
M U C ( U ) = n MUC(U)=n MUC(U)=n
其中 U U U为不确定度, n n n为 U U U的最大位数(小数点后第 n n n位)。-
加减法则
U = U A + U B U = U_A +U_B U=UA+UB
显然
M U C ( U ) = M I N ( M U C ( U A ) , M U C ( U B ) ) ( − 1 ) MUC(U)=MIN(MUC(U_A),MUC(U_B))(-1) MUC(U)=MIN(MUC(UA),MUC(UB))(−1)
故结果的不确定度保留到所有参与运算的数中末尾数数量级最大的那一位。 -
乘除法则
通过科学记数法同意小数位数与有效位数,任何一个运算的数可以写为
N = N m a i n × 1 0 n , 1 ≤ N m a i n
-
有效位数运算法则及其原理
最新推荐文章于 2024-09-12 11:56:06 发布
有效位数运算是间接测量计算的重要部分,涉及到不确定度的传递。在没有不确定度估算时,遵循保留一位或两位欠准确数字的原则。加减法则中,结果不确定度与末尾数数量级最大的那一位对齐;乘除法则下,不确定度与有效位数最少的项相同,幂次计算则与底数有效位数一致。但在具体案例中,这些法则可能存在例外。
摘要由CSDN通过智能技术生成