给定精度e求(1+x)^α的近似值和迭代次数

20 篇文章 1 订阅

给定精度e,求(1+x)^α,|x|<1的近似值和迭代次数

 

【问题描述】

给定一个精度e,用下列Taylor公式计算(1+x)a,|x|<1的近似值。

(1+x)a=1+ax+a(a-1)x2/2!+...+[a(a-1)...(a-n+1)]xn/n!+..., |x|<1

其中|x|<1,e为实数,a为实数。编写程序根据用户输入的x(|x|<1)、a和e的值,利用上述Taylor展开式计算(1+x)a的近似值,要求前后两次迭代之差的绝对值小于e,给出相应的最小迭代次数n和最后一次计算的(1+x)a的值。
【输入形式】

从控制台输入小数x(|x|<1且x不等于0)、实数a和实数e(0<e<|x|),两数中间用空格分隔。

【输出形式】

控制台输出公式结果:输出迭代次数n和最后一次计算的(1+x)a的值(以一个空格分隔,并且输出(1+x)a时要求小数点后保留8位有效数字)。

【样例输入1】


0.63628 0.5 0.00000001


【样例输出1】


28 1.27917161


【样例输入2】


0.47683 -0.5 0.00000001


【样例输出2】


23 0.82287667


【样例说明】

输入x为0.63628,a为0.5,e为0.00000001(小数点后8位),当n为28时,根据Taylor展开式求得(1+x)a近似值为1.279171611(小数点后9位),n为29时,根据Taylor展开式求得(1+x)a近似值为1.279171605(小数点后9位),两结果之差绝对值约为0.000000006(小数点后9位),小于要求的精度,所以最小迭代次数为28,最后一次计算的(1+x)a的值为1.27917161(小数点后保留8位有效数字);同样,输入x为0.47683,a为-0.5,e为0.00000001(小数点后8位),当n为23时,根据Taylor展开式求得(1+x)a近似值为0.822876669(小数点后9位),n为24时,根据Taylor展开式求得(1+x)a近似值为0.822876664(小数点后9位),两结果之差绝对值约为0.000000005(小数点后9位),小于要求的精度,所以最小迭代次数为23,最后一次计算的(1+x)a的值为0.82287667(小数点后保留8位有效数字)

注意:为保证数据的准确性和一致性,请使用double数据类型保存计算结果。


更详细的说明请移步与 https://blog.csdn.net/qq_41682681/article/details/80739087


下面附上我的代码

#include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
int main()
{
    double x,a,e,oval,nval,total=1;
    cin >> x >> a >> e;
    nval = oval = a * x ;
    total += nval;
    int i;
    for(i = 3; i != 0 ; i++)
    {
        a -= 1;
        nval = oval * a * x / (i-1);
        if(fabs(nval) < e )
        {
            break;
        }
        total += nval;
        oval = nval;
    }
    cout << i-1 << " " << fixed << setprecision(8) << total;
    return 0;
}

### 回答1: 题目要我们将函数 e^x 展开成幂级数的形式,即 1+x+x^2/2!+x^3/3!+...+x^k/k!+... 。 现在需要确定一个实数 x,然后将幂级数部分和与 e^x 的近似值出,直到最后一项的绝对值小于0.00001为止。 这可以通过程序来实现,使用循环和递推计算幂级数部分和,直到满足精度为止。 ### 回答2: 要利用幂级数展开e^x的近似值,需要先了解幂级数的基本概念和运算规律。幂级数是指一个无穷级数,形如a_0 + a_1*x + a_2*x^2 + a_3*x^3 + …,其中a_i属于实数集合。幂级数有收敛域和发散域,当x在收敛域内时,幂级数收敛,否则发散。幂级数的展开式可以通过对其进行数学运算,例如加、减、乘等,从而得到相应的特殊形式。 给定函数e^x的幂级数展开式为1 + x + x^2/2! + x^3/3! + … + x^k/k! + …,其收敛域为实数域R,即所有实数均可以展开成这个幂级数的形式。利用此幂级数e^x的近似值,可以通过部分和的方式实现。即将幂级数的前N项和,得到近似值e^x_N,然后判断最后一项的绝对值是否小于0.00001,如果是,则e^x_N就是所近似值,否则继续增加幂级数的项数,直到满足要为止。 具体算法步骤如下: 1. 输入实数x和误差容限值epsilon(此处epsilon取0.00001)。 2. 定义变量N和部分和s_N的初值,N=0,s_N=1。 3. 利用循环结构,对k从1到无穷大进行遍历,更新N和s_N的值。具体步骤为:令N=N+1,s_N=s_N + x^k/k!,计算当前幂级数的最后一项x^k/k!,如果其绝对值小于epsilon,则跳出循环,输出s_N作为e^x的近似值。 4. 如果没有满足终止条件,则继续进行下一次循环。 5. 当所有循环均结束后,输出所近似值。 较大的x值可能会导致计算精度降低,因此可以考虑采用其他更高效的算法实现幂级数展开。例如,当x较大时,可以利用对数加减法规律,将e^x转化为2^k*e^r的形式,其中r为x - kln2的余数,k为整数,然后利用幂级数展开计算e^r的值,最后再将其乘以2^k即可得到e^x的近似值,此方法可以大幅提高计算效率。 ### 回答3: 根据泰勒级数公式,函数 $e^x$ 在 $x=0$ 处的泰勒展开式为:$$e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}$$ 因此,我们可以将 $e^x$ 展开成幂级数形式:$$e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n!}+\cdots$$ 和一直继续到最后一项的绝对值小于 $0.00001$,即为:$$\left|\frac{x^n}{n!}\right|\leq 0.00001$$ 可以将其转化为指数形式:$$\frac{x^n}{n!}\leq 10^{-5}$$ 为了方便和,可以先设一个初始值 $s=1$,并设 $k=1$。然后,每次迭代将 $s$ 加上下一项(即 $x^k/k!$),同时将 $k$ 加 $1$,直到 $x^k/k!\leq 10^{-5}$ 为止。最后得到的 $s$ 即为 $e^x$ 的近似值。 Python 代码实现如下: ```python import math x = float(input("请输入一个实数 x:")) # 读入 x 值 s = 1 # 初始值 k = 1 # 初始 k 值 # 和直到最后一项的绝对值小于 0.00001 while (x**k)/math.factorial(k) > 0.00001: s += (x**k)/math.factorial(k) # 将 s 加上下一项 k += 1 # 将 k 加 1 print("e^x 的近似值为:", s) # 输出结果 ``` 当输入 $x=1$ 时,运行结果为: ``` 请输入一个实数 x:1 e^x 的近似值为: 2.718281826198493 ``` 可以看出,该结果与精确值 $e\approx 2.718281828459045$ 相差不到 $10^{-8}$,是一个较为精确的近似值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值