给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)
PS:巨方便简单上手,貌似现在是免费
官网:www.mpaidata.com mpai数据科学平台
评价多个对象的水平并排序,指标间关联性很强
主成分分为主成分分析和主成分评价两个方面,分析就是单纯的分析数据是否具有主成分和主成分效果如何,评价就是根据主成分运行的结果直接评价了。
要求:指标之间相关性比较高,一般需要对数据的相关性或者主成分分析的结果进行分析后,如果效果比较好,再使用主成分分析,如果效果不好,那就不要使用主成分分析:切记
主成分说白了就是在评价的时候有很多指标,因为指标太多了,并且各个指标之间相互有影响,为了消除指标之间的影响,单纯从数据的角度寻找各个指标具有公共特征,,这些公共的特征就是主成分,也就是常说的第一主成分,第二主成分,第N主成分。具体的第一主成分第二主成分以及累计贡献率(要保证所有主成分累计对原始数据的贡献达到80%)是如何计算出的,可以不用掌握,且在比赛的时候也没必要写在论文上,只需要给出主要的结果即可。
这里我们直接给出一个例题:
例 我国各地区普通高等教育发展水平综合评价
近年来,我国普通高等教育得到了迅速发展,为国家培养了大批人才。但由于我国各地区经济发展水平不均衡,加之高等院校原有布局使各地区高等教育发展的起点不一致,因而各地区普通高等教育的发展水平存在一定的差异,不同的地区具有不同的特点。对我国各地区普通高等教育的发展状况进行聚类分析,明确各类地区普通高等教育发展状况的差异与特点,有利于管理和决策部门从宏观上把握我国普通高等教育的整体发展现状,分类制定相关政策,更好的指导和规划我国高教事业的整体健康发展。
指标的原始数据取自《中国统计年鉴,1995》和《中国教育统计年鉴,1995》除以各地区相应的人口数得到十项指标值见表 1。其中:为每百万人口高等院校数;
为每十万人口高等院校毕业生数;
为每十万人口高等院校招生数;
为每十万人口高等院校在校生数;
为每十万人口高等院校教职工数;
为每十万人口高等院校专职教师数;
为高级职称占专职教师的比例;
为平均每所高等院校的在校生数;
为国家财政预算内普通高教经费占国内生产总值的比重;
为生均教育经费。
图1 高等教育的十项评价指标
表1 我国各地区普通高等教育发展状况数据
地区 |
|
|
|
|
x5 |
x6 |
x7 |
x8 |
x9 |
x10 |
北京 |
5.96 |
310 |
461 |
1557 |
931 |
319 |
44.36 |
2615 |
2.20 |
13631 |
上海 |
3.39 |
234 |
308 |
1035 |
498 |
161 |
35.02 |
3052 |
0.90 |
12665 |
天津 |
2.35 |
157 |
229 |
713 |
295 |
109 |
38.40 |
3031 |
0.86 |
9385 |
陕西 |
1.35 |
81 |
111 |
364 |
150 |
58 |
30.45 |
2699 |
1.22 |
7881 |
辽宁 |
1.50 |
88 |
128 |
421 |
144 |
58 |
34.30 |
2808 |
0.54 |
7733 |
吉林 |
1.67 |
86 |
120 |
370 |
153 |
58 |
33.53 |
2215 |
0.76 |
7480 |
黑龙江 |
1.17 |
63 |
93 |
296 |
117 |
44 |
35.22 |
2528 |
0.58 |
8570 |
湖北 |
1.05 |
67 |
92 |
297 |
115 |
43 |
32.89 |
2835 |
0.66 |
7262 |
江苏 |
0.95 |
64 |
94 |
287 |
102 |
39 |
31.54 |
3008 |
0.39 |
7786 |
广东 |
0.69 |
39 |
71 |
205 |
61 |
24 |
34.50 |
2988 |
0.3 |