给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)
PS:想要数据包络分析的,可以点击下方链接下载,巨方便简单上手,还有分析模板
官网:www.mpaidata.com mpai数据科学平台
数据包络分析模板
数据包络分析是评价多输入指标和多输出指标的较为有效的方法,将投入与产出进行比较。它的结果包含的意思有:
①θ=1,DEA有效,表示投入与产出比达到最优
②θ<1,非DEA有效,表示投入与产出比没有达到最优,一般来说,θ越大说明效果越好。
数据包络分析是通过对投入的指标和产出的指标做了一个线性规划,并且进行变换后,然后根据其线性规划的对偶问题(线性规划对偶问题具有经济学意义),求解这个对偶问题的最值就是θ。
数据包络分析(data envelopment analysis,DEA)是一个对多投入\多产出的多个决策单元的效率评价方法。是1978年由CHARNES和COOPER创建的。可广泛使用于业绩评价。
DEA特别适用于具有多输入多输出的复杂系统,这主要体现在以下几点:
- DEA以决策单位各输入/输出的权重为变量,从最有利于决策单元的角度进行评价,从而避免了确定各指标在优先意义下的权重;
- 假定每个输入都关联到一个或者多个输出,而且输入/输出之间确实存在某种关系,使用DEA方法则不必确定这种关系的显示表达式。
-------------------------------------------------------------------------------------------------------
例 利用DEA方法对天津市的可持续发展进行评价。在这里选取较具代表性的指标作为输入变量和输出变量,见表1。
表1 各决策单元输入、输出指标值
序号 |
决策 单元 |
政府财政收入占 GDP的比例/% |
环保投资占GDP 的比例/% |
每千人科 |