【高斯和拉普拉斯为什么分别对应L2和L1?】差分隐私系统学习记录(五)

写在前面的话

有一段时间没更新这个系列了,今天组会完晚上休息一下,再看看这本书。纯属个人笔记,如有问题请看原文或者留下评论。

Laplace versus Gauss

在这里插入图片描述

什么是先验分布?后验分布?似然估计?

x: 观察得到的数据(结果)

y : 决定数据分布的参数(原因)

先验分布(因):Pr(y)

后验分布(先果后因:贝叶斯公式):Pr(y|x)

似然估计(先因后果):Pr(x|y)

举个例子:我有一个图像分类模型,有很多数据,每个数据有自己的特征。同时我设定了一些类别。这个时候我拿一个数据问你,这个数据属于哪一类?

Pr(类别|特征)=Pr(类别)×{Pr(特征|类别)/Pr(特征)}

Pr(类别|特征)表示后验,在该特征下属于这个类别的概率。

Pr(类别)表示先验,样本中该类别的概率。

Pr(特征|类别)表示似然,该类别下,是该特征的概率。

Pr(特征|类别)/Pr(特征)越大则偏向这个类别,越小则不是这个类别。

Pr(特征)表示全概率公式计算。

Ps.先验是非常重要的,特别对于机器学习来说,先验就是优化的开始, 可以在较小的数据集中有良好的泛化性能,从信息论的角度看,向系统加入了正确先验这个信息会提高系统的性能。

为什么拉普拉斯对应L1,高斯对应L2

原因是L1和L2正则先验分别是服从拉普拉斯分布和高斯分布的。至于先验分布是什么前面有解释。即先验分布是拉普拉斯分布时,正则化项为L1范数;当先验分布是高斯分布时,正则化项为L2范数。关于这两者的深入理解可以看看这篇博客
在这里插入图片描述
1、拉普拉斯分布在参数w=0点的概率最高,因此L1正则化相比于L2正则化更容易使参数为0。
2、高斯分布在零附近的概率较大,因此L2正则化相比于L1正则化更容易使参数分布在一个很小的范围内。

回到书上

在这里插入图片描述
这一段应该比较好理解,我就不赘述了。就是高斯也行,只是用的L2。只是算敏感度的时候要遵循L2范数。并且定理3.22提到了高斯机制伴随着 δ。
在这里插入图片描述
高斯优点
1、添加的噪声与其他噪声源具有相同的类型
2、两个高斯的和是高斯的,因此隐私机制对统计分析的影响可能更容易理解和修正。

这两种机制在组合下产生相同的累积损失,因此即使对于每个单独合成来说,隐私保证较弱,但在许多计算中的累积影响是可比较的。此外,如果 δ 足够小(例如,亚多项式),在实践中,我们将永远不会遇到差分隐私保证的不足之处。

也就是说,相对于拉普拉斯噪声,高斯噪声在理论上是有缺点的。考虑 Report Noisy Max(带有拉普拉斯噪声)算法下,每个候选输出在数据库 x 上的效用得分与其在相邻数据集 y 上的效用分数相同。该机制产生 (ε,0)-差分隐私,与候选输出的数量无关。如果我们使用高斯噪声并报告最大值,并且如果候选值的数量比 1/δ 大,那么我们将精确地选择发生概率小于 δ 的具有大高斯噪声的事件。当我们远离高斯分布的尾时,我们不再能保证在 x,y 数据库的观测概率的差别在e±ε因子内。

<think>嗯,用户之前问了决策树随机森林,现在接着问正则化是什么以及如何减少过拟合,看来他们是在学习机器学习的基础概念。需要先回顾一下过拟合是什么,然后引入正则化的定义作用。 用户可能已经了解过拟合是指模型在训练数据上表现很好,但在测试数据上表现差,所以需要正则化来解决这个问题。但可能还不清楚正则化的具体机制,比如L1L2区别,或者为什么正则化能防止过拟合。 得先解释正则化的基本概念,然后分类型讨论,比如L1L2正则化,可能还需要提到dropout或者早停法等其他方法。但用户的问题明确提到正则化,所以重点应该在L1L2上。 要注意用例子说明,比如线性回归中的正则化项,以及如何在损失函数中加入这些项。可能需要数学公式,但用户之前的回答中用了LaTeX,所以应该继续使用,但确保正确。 还要说明正则化如何通过惩罚复杂模型来降低过拟合风险,比如L1会带来稀疏性,L2防止权重过大。可能需要对比两者,帮助用户理解不同场景下的应用。 用户可能的应用场景是实际建模时遇到泛化问题,需要选择正则化方法。因此,除了理论,最好给出实际选择的建议,比如高维数据用L1,需要稳定模型用L2。 需要检查有没有遗漏其他正则化方法,比如弹性网络或数据增强,但可能用户主要关注参数正则化,所以先集中在L1L2,再简要提及其他方法。 确保回答结构清晰,分点列出,定义、原理、类型、应用场景对比,这样用户容易理解。同时,保持语言口语化,避免过于学术化,但又要准确。</think>以下是关于正则化的详细解析: --- ### **一、正则化的定义** 正则化(Regularization)是机器学习中一种**通过向模型添加额外约束或惩罚项**来防止过拟合(Overfitting)的核心技术。其本质是通过**限制模型复杂度**,迫使模型在训练时**兼顾拟合数据与保持简单性**,从而提高泛化能力。 --- ### **二、正则化的核心原理** #### 1. **过拟合的根本原因** 模型过度学习训练数据中的噪声或局部特征(如复杂多项式拟合中的高阶项),导致在测试集上表现差。 **示例**:用$y = w_1x^{10} + w_2x^9 + \dots + w_{10}$拟合简单线性数据,模型复杂度过高。 #### 2. **正则化的作用机制** 在损失函数(Loss Function)中增加一个**惩罚项**,对模型参数(如权重$w$)进行约束: $$ \text{总损失} = \text{原始损失} + \lambda \cdot \text{正则化项} $$ - $\lambda$:正则化强度超参数,控制惩罚力度($\lambda$越大,模型越简单)。 - **效果**:通过限制参数值的大小(如使权重趋近于0或分布均匀),降低模型复杂度。 --- ### **三、正则化的主要类型** #### 1. **L1正则化(Lasso正则化)** - **公式**: $$ \text{正则化项} = \sum_{i=1}^n |w_i| $$ - **特点**: - 倾向于产生**稀疏权重矩阵**(部分权重被压缩为0),天然具有**特征选择**功能。 - 适合高维数据(如特征数远大于样本数时)。 - **示例**:线性回归+L1正则化 → Lasso回归。 #### 2. **L2正则化(Ridge正则化)** - **公式**: $$ \text{正则化项} = \sum_{i=1}^n w_i^2 $$ - **特点**: - 使权重**整体趋近于0但不严格为0**,保持特征间的平衡。 - 更适合处理**共线性特征**(特征间高度相关)。 - **示例**:线性回归+L2正则化 → 岭回归(Ridge Regression)。 #### 3. **弹性网络(Elastic Net)** - **公式**: $$ \text{正则化项} = \alpha \sum_{i=1}^n |w_i| + (1-\alpha) \sum_{i=1}^n w_i^2 $$ - **特点**: - 结合L1L2正则化的优点,通过超参数$\alpha$调节二者比例。 - 适用于同时需要特征选择权重稳定的场景。 --- ### **四、正则化如何减少过拟合** 1. **限制模型复杂度**: - 通过惩罚大权重,抑制模型对训练数据中噪声的过度敏感。 2. **促进参数稀疏性或平滑性**: - L1正则化通过稀疏化去除冗余特征;L2正则化通过权重衰减避免极端参数值。 3. **等效于增加先验知识**(贝叶斯视角): - L1正则化对应拉普拉斯先验,L2对应高斯先验,引导参数向简单分布靠近。 --- ### **、正则化的应用场景** | **场景** | **推荐方法** | **原因** | |-------------------------|--------------------------|-----------------------------------| | 高维数据、特征选择 | L1正则化(Lasso) | 自动筛选重要特征,降低维度 | | 特征共线性强 | L2正则化(Ridge) | 稳定权重分配,避免共线性干扰 | | 需兼顾稀疏性与稳定性 | 弹性网络(Elastic Net) | 平衡L1L2的优势 | | 深度学习模型(如神经网络)| Dropout、权重衰减 | 随机失活神经元或直接约束权重 | --- ### **六、代码示例(以线性回归为例)** ```python from sklearn.linear_model import Lasso, Ridge # L1正则化(Lasso) lasso = Lasso(alpha=0.1) # alpha即λ lasso.fit(X_train, y_train) # L2正则化(Ridge) ridge = Ridge(alpha=0.1) ridge.fit(X_train, y_train) ``` --- ### **七、选择正则化方法的建议** 1. **从L2开始**:大多数情况下,L2正则化效果稳定且易于调参。 2. **特征维度高时用L1**:尤其是当部分特征明显无关时。 3. **结合交叉验证**:通过网格搜索(Grid Search)优化$\lambda$值。 --- ### **八、其他正则化技术** 1. **Dropout(神经网络专用)**:训练时随机丢弃部分神经元,强制模型不依赖特定神经元。 2. **早停法(Early Stopping)**:在验证集性能下降时提前终止训练。 3. **数据增强**:通过扩展训练数据(如图像旋转、裁剪)间接实现正则化。 --- ### **总结** 正则化是**通过约束模型复杂度来提升泛化能力**的核心工具,L1/L2正则化是最经典的方法。实际应用中需根据数据特点任务需求灵活选择,并结合超参数调优达到最佳效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

粥粥粥少女的拧发条鸟

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值