达观文本竞赛系列(三)

1,word2vec词向量原理:

word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。虽然源码是开源的,但是谷歌的代码库国内无法访问,因此本文的讲解word2vec原理以Github上的word2vec代码为准。本文关注于word2vec的基础知识。

用词向量来表示词并不是word2vec的首创,在很久之前就出现了。最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。比如我们有下面的5个词组成的词汇表,词"Queen"的序号为2, 那么它的词向量就是(0,1,0,0,0)(0,1,0,0,0)。同样的道理,词"Woman"的词向量就是(0,0,0,1,0)(0,0,0,1,0)。这种词向量的编码方式我们一般叫做1-of-N
representation或者one hot representation.

Distributed representation可以解决One
hot representation的问题,它的思路是通过训练,将每个词都映射到一个较短的词向量上来。所有的这些词向量就构成了向量空间,进而可以用普通的统计学的方法来研究词与词之间的关系。这个较短的词向量维度是多大呢?这个一般需要我们在训练时自己来指定。

用Distributed Representation表示的较短的词向量,我们就可以较容易的分析词之间的关系了,比如我们将词的维度降维到2维,有一个有趣的研究表明,用下图的词向量表示我们的词时,我们可以发现:

King –
Man + Woman = Queen

图片:分布式词向量

可见我们只要得到了词汇表里所有词对应的词向量,那么我们就可以做很多有趣的事情了。

2,简单实践:

在这里插入图片描述

3,Reference:

https://www.cnblogs.com/pinard/p/7243513.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值