数据结构---二叉查找树(二叉搜索树)

文章介绍了二叉查找树的基本特性,包括其有序性以及在查找、插入和删除操作上的效率。对于删除操作,详细讨论了没有子节点、有一个子节点和有两个子节点的情况。提供了一个简单的Java实现,但指出当树不平衡时,查找时间复杂度可能退化为O(n),建议使用平衡二叉树优化。
摘要由CSDN通过智能技术生成

二叉查找树(二叉排序树)在二叉树的基础上,增加了

  1. 如果左子树不为空,则左子树上所有节点的值都小于根节点的值
  2. 如果右子树不为空,则右子树上所有节点的值都大于根节点的值
  3. 左右子树也都是二叉查找树

在这里插入图片描述

特性

  1. 查找数据

节点总数是n,那么查找节点的时间复杂度就是O(logn),

  1. 维持节点的有序性

中序遍历二叉查找树,输出结果完全按照升序排列

插入

插入和和查找过程是类似的,定位插入的位置
在这里插入图片描述

删除

待删除节点没有子节点

没有孩子,因此直接删除即可:
在这里插入图片描述
在这里插入图片描述

待删除节点有一个子节点

让孩子节点取代被删除的节点,孩子节点以下的节点关系无须变动:
在这里插入图片描述
在这里插入图片描述

待删除节点有两个子节点

在这里插入图片描述
需要选择与待删除节点最接近的节点来取代它
习惯上我们选择仅大于待删除节点的节点,
在这里插入图片描述
(被选中的节点6,仅大于节点5,因此一定没有左孩子。所以我们按照情况1或情况2的方式,删除多余的节点6:)
在这里插入图片描述

JAVA实现

    // 结点类
    private class Node {
        int data;
        Node right;
        Node left;

        Node(int data){
            this.data = data;
        }
    }
  //根节点引用(指针)
private Node root;
//插入结点
    public boolean insert(int data) {
        Node node = new Node(data);
        if(root == null){
            root = node;
            return true;
        }
        Node targetNode  = root;
        while (targetNode != null) {
            if( data == targetNode.data){
                System.out.println("二叉查找树中已有重复的结点:" + data);
                return false;
            }
            else if (data > targetNode.data) {
                if(targetNode.right == null){
                    targetNode.right = node;
                    return true;
                }
                targetNode = targetNode.right;
            }
            else {
                if(targetNode.left == null){
                    targetNode.left = node;
                    return true;
                }
                targetNode = targetNode.left;
            }
        }
        return true;
    }
    //中序遍历
    public static void inOrderTraversal(Node node){
        if(node == null){
            return;
        }
        inOrderTraversal(node.left);

        System.out.print(node.data + " ");
        inOrderTraversal(node.right);
    }
//查找结点
    public Node search(int data) {
        Node targetNode = root;
        while (targetNode!=null && targetNode.data != data) {
            if (data > targetNode.data) {
                targetNode = targetNode.right;
            } else {
                targetNode = targetNode.left;
            }
        }
        if(targetNode == null){
            System.out.println("未找到结点:" + data);
        } else {
            System.out.println("已找到结点:" + data);
        }
        return targetNode;
    }
//删除结点
    public boolean delete(int data) {
        Node targetNode = root;
        Node parentNode = new Node(data);
        //判断待删除结点是否存在
        while (targetNode.data != data) {
            parentNode = targetNode;
            if (data > targetNode.data) {
                targetNode = targetNode.right;
            } else {
                targetNode = targetNode.left;
            }
            if (targetNode == null) {
                // 没有找到待删除结点
                return false;
            }
        }
        // 待删除结点没有子节点
        if (targetNode.right==null && targetNode.left==null) {
            if (targetNode == root) {
                //待删除结点是根结点
                root = null;
            } else {
                if (parentNode.right == targetNode) {
                    parentNode.right = null;
                } else {
                    parentNode.left = null;
                }
            }
        }
        //待删除结点有一个子结点(右)
        else if(targetNode.left == null) {
            if(targetNode == root) {
                root = targetNode.right;
            } else if(parentNode.right == targetNode) {
                parentNode.right = targetNode.right;
            } else {
                parentNode.left = targetNode.right;
            }
        }
        //待删除结点有一个子结点(左)
        else if(targetNode.right == null) {
            if(targetNode == root) {
                root = targetNode.left;
            } else if(parentNode.right == targetNode) {
                parentNode.right = targetNode.left;
            } else {
                parentNode.left = targetNode.left;
            }
        }
        //待删除结点有两个子结点
        else {
            //待删除结点的后继结点的父结点
            Node successParentNode = targetNode;
            //待删除结点的后继结点
            Node successNode = targetNode.right;
            //这一个while循环找到删除节点的子节点中,刚好比删除节点大的那个节点的值
            //这个值就是退出循环的successNode.data
            while(successNode.left != null)
            {
                successParentNode = successNode;
                successNode = successNode.left;
            }
            //把后继结点复制到待删除结点位置
            targetNode.data = successNode.data;
            //删除后继结点
            //被选中的节点,仅大于待删除的节点,因此一定被选中的节点successNode一定没有左孩子。
            //successNode只可能有:successNode.right
            // 所以我们按照情况1或情况2的方式,删除多余的节点successNode:
            //这里我感觉只要else {
            //                successParentNode.left = successNode.right;
            //            }就行了,应为successNode是仅大于待删除的节点。
            if(successParentNode.right == successNode) {
                successParentNode.right = successNode.right;
                //System.out.println("xxxx");
            } else {
                successParentNode.left = successNode.right;
            }
        }
        return true;
    }

测试方法:

public static void main(String[] args) {
        BinarySearchTree tree = new BinarySearchTree();
        int input[]= {6,3,8,2,5,7,9,1,4};
        for(int i=0; i<input.length; i++) {
            tree.insert(input[i]);
        }
        inOrderTraversal(tree.root);
        System.out.println();
        tree.search(3);
        tree.delete(3);
        tree.search(3);
        tree.delete(6);
        inOrderTraversal(tree.root);
    }

在这里插入图片描述

缺陷

在这里插入图片描述
虽然这样一棵树也符合二叉查找树的特性,但是查找节点的时间复杂度退化成了O(n)。
要解决这个问题,需要用到平衡二叉树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值