中科大计算机数学作业解答六(参考书:具体数学)

1.

在这里插入图片描述


F ( z ) = z 3 − 8 ( z − 1 ) , H ( z ) = z 3 F(z)=z^3-8(z-1),H(z)=z^3 F(z)=z38(z1),H(z)=z3
则有
F ′ ( 1 ) = − 5 , F ′ ′ ( 1 ) = 6 , F ′ ′ ′ ( 1 ) = 6 H ′ ( 1 ) = 3 , H ′ ′ ( 1 ) = 6 , H ′ ′ ′ ( 1 ) = 6 F'(1)=-5,F''(1)=6,F'''(1)=6\\ H'(1)=3,H''(1)=6,H'''(1)=6 F(1)=5,F′′(1)=6,F′′′(1)=6H(1)=3,H′′(1)=6,H′′′(1)=6
计算三阶累积量
k 3 ( H ) = H ′ ′ ′ ( 1 ) + 3 H ′ ′ ( 1 ) + H ′ ( 1 ) − 3 H ′ ( 1 ) H ′ ′ ( 1 ) − 3 ( H ′ ( 1 ) ) 2 + 2 ( H ′ ( 1 ) ) 3 = 6 + 3 ∗ 6 + 3 − 3 ∗ 3 ∗ 6 − 3 ∗ 3 2 + 2 ∗ 3 3 = 0 k 3 ( F ) = F ′ ′ ′ ( 1 ) + 3 F ′ ′ ( 1 ) + F ′ ( 1 ) − 3 F ′ ( 1 ) F ′ ′ ( 1 ) − 3 ( F ′ ( 1 ) ) 2 + 2 ( F ′ ( 1 ) ) 3 = 6 + 3 ∗ 6 − 5 + 5 ∗ 3 ∗ 6 − 3 ∗ ( − 5 ) 2 + 2 ∗ ( − 5 ) 3 = − 216 k_3(H)=H'''(1)+3H''(1)+H'(1)-3H'(1)H''(1)-3(H'(1))^2+2(H'(1))^3\\ =6+3*6+3-3*3*6-3*3^2+2*3^3=0\\ k_3(F)=F'''(1)+3F''(1)+F'(1)-3F'(1)F''(1)-3(F'(1))^2+2(F'(1))^3\\ =6+3*6-5+5*3*6-3*(-5)^2+2*(-5)^3=-216\\ k3(H)=H′′′(1)+3H′′(1)+H(1)3H(1)H′′(1)3(H(1))2+2(H(1))3=6+36+3336332+233=0k3(F)=F′′′(1)+3F′′(1)+F(1)3F(1)F′′(1)3(F(1))2+2(F(1))3=6+365+5363(5)2+2(5)3=216
又有
k 3 ( G ) + k 3 ( F ) = k 3 ( H ) k_3(G)+k_3(F)=k_3(H) k3(G)+k3(F)=k3(H)
解得
k 3 ( G ) = 216 k_3(G)=216 k3(G)=216

2.

在这里插入图片描述

设出现反面的概率为 q = 1 − p q=1-p q=1p,有 A = H T H T H A=HTHTH A=HTHTH,则有

k12345
A ( k ) A^{(k)} A(k)HTHHTHTHTHHTHTH
A ( k ) A_{(k)} A(k)HHTHTHHTHTHTHTH

E X = ∑ k = 1 m A ~ ( k ) [ A ( k ) = A ( k ) ] = A ~ ( 1 ) + A ~ ( 3 ) + A ~ ( 5 ) = p − 1 + p − 2 q − 1 + p − 3 q − 2 V X = ( E X ) 2 − ∑ k = 1 m ( 2 k − 1 ) A ~ ( k ) [ A ( k ) = A ( k ) ] = ( p − 1 + p − 2 q − 1 + p − 3 q − 2 ) 2 − ( p − 1 + 5 p − 2 q − 1 + 9 p − 3 q − 2 ) \begin{aligned} EX&=\sum^m_{k=1}\tilde{A}_{(k)}[A^{(k)}=A_{(k)}]\\ &=\tilde{A}_{(1)}+\tilde{A}_{(3)}+\tilde{A}_{(5)}=p^{-1}+p^{-2}q^{-1}+p^{-3}q^{-2}\\ VX&=(EX)^2-\sum^m_{k=1}(2k-1)\tilde{A}_{(k)}[A^{(k)}=A_{(k)}]\\ &=(p^{-1}+p^{-2}q^{-1}+p^{-3}q^{-2})^2-(p^{-1}+5p^{-2}q^{-1}+9p^{-3}q^{-2})\\ \end{aligned} EXVX=k=1mA~(k)[A(k)=A(k)]=A~(1)+A~(3)+A~(5)=p1+p2q1+p3q2=(EX)2k=1m(2k1)A~(k)[A(k)=A(k)]=(p1+p2q1+p3q2)2(p1+5p2q1+9p3q2)

3.

在这里插入图片描述

( n + 2 + 3 n + 1 ) n = n n ( 1 + 2 n + 3 n ( n + 1 ) ) n = n n ( 1 + 2 n + 5 n ( n + 1 ) ) n = n n e x p ( n l n ( 1 + 2 n + 5 n ( n + 1 ) ) ) = n n e x p ( n ( 2 n + 5 n ( n + 1 ) − 1 2 ( 2 n + 5 n ( n + 1 ) ) 2 + O ( n − 3 ) ) ) = n n e x p ( 2 n + 5 n + 1 − 1 2 ( 2 n + 5 ) 2 n ( n + 1 ) 2 + O ( n − 2 ) ) = n n e x p ( 2 + 3 n + 1 − ( 2 n + 5 ) 2 2 n ( n + 1 ) 2 + O ( n − 2 ) ) = n n e 2 ( 1 + 3 n + 1 + O ( n − 2 ) ) ( 1 − ( 2 n + 5 ) 2 2 n ( n + 1 ) 2 + O ( n − 2 ) ) = n n e 2 ( 1 + 2 n 2 − 14 n − 25 2 n ( n + 1 ) 2 + O ( n − 2 ) ) = n n e 2 ( 1 + n − 1 + O ( n − 2 ) ) = n n e 2 ( 1 + n − 1 ) ( 1 + O ( n − 2 ) ) \begin{aligned} (n+2+\frac3{n+1})^n&=n^n(1+\frac2n+\frac3{n(n+1)})^n\\ &=n^n(1+\frac{2n+5}{n(n+1)})^n\\ &=n^nexp(nln(1+\frac{2n+5}{n(n+1)})) \\ &=n^nexp(n(\frac{2n+5}{n(n+1)}-\frac12(\frac{2n+5}{n(n+1)})^2+O(n^{-3}))) \\ &=n^nexp(\frac{2n+5}{n+1}-\frac12\frac{(2n+5)^2}{n(n+1)^2}+O(n^{-2}) ) \\ &=n^nexp(2+\frac{3}{n+1}-\frac{(2n+5)^2}{2n(n+1)^2}+O(n^{-2}))\\ &=n^ne^2(1+\frac{3}{n+1}+O(n^{-2}))(1-\frac{(2n+5)^2}{2n(n+1)^2}+O(n^{-2})) \\ &=n^ne^2(1+\frac{2n^2-14n-25}{2n(n+1)^2}+O(n^{-2})) \\ &=n^ne^2(1+n^{-1}+O(n^{-2})) \\ &=n^ne^2(1+n^{-1})(1+O(n^{-2})) \end{aligned} (n+2+n+13)n=nn(1+n2+n(n+1)3)n=nn(1+n(n+1)2n+5)n=nnexp(nln(1+n(n+1)2n+5))=nnexp(n(n(n+1)2n+521(n(n+1)2n+5)2+O(n3)))=nnexp(n+12n+521n(n+1)2(2n+5)2+O(n2))=nnexp(2+n+132n(n+1)2(2n+5)2+O(n2))=nne2(1+n+13+O(n2))(12n(n+1)2(2n+5)2+O(n2))=nne2(1+2n(n+1)22n214n25+O(n2))=nne2(1+n1+O(n2))=nne2(1+n1)(1+O(n2))

4.

在这里插入图片描述

f ( x ) = 1 n 2 + x 2 f(x)=\frac1{n^2+x^2} f(x)=n2+x21
∑ k = 1 n f ( k ) = ∑ k = 0 n − 1 f ( k ) + f ( n ) − f ( 0 ) = ∫ 0 n 1 n 2 + x 2 d x − 1 2 1 n 2 + x 2 ∣ 0 n + ∑ k = 1 m B 2 k ( 2 k ) ! f ( 2 k − 1 ) ( x ) ∣ 0 n + O ( ( 2 π ) − 2 m ) ∫ 0 n ∣ f ( 2 m ) ( x ) ∣ d x − 1 2 n 2 \begin{aligned} \sum^n_{k=1}f(k)&=\sum^{n-1}_{k=0}f(k)+f(n)-f(0)\\ &=\int^n_0\frac1{n^2+x^2}dx-\frac12\frac1{n^2+x^2}|^n_0+\sum^m_{k=1}\frac{B_{2k}}{(2k)!}f^{(2k-1)}(x)|^n_0\\ &+O((2\pi)^{-2m})\int^n_0|f^{(2m)}(x)|dx-\frac1{2n^2} \end{aligned} k=1nf(k)=k=0n1f(k)+f(n)f(0)=0nn2+x21dx21n2+x210n+k=1m(2k)!B2kf(2k1)(x)0n+O((2π)2m)0nf(2m)(x)dx2n21

f 1 ( x ) = − 2 x ( n 2 + x 2 ) 2 , f 2 ( x ) = 6 x 2 − 2 n 2 ( n 2 + x 2 ) 3 f 3 ( x ) = 24 x 3 − 24 n 2 x ( n 2 + x 2 ) 4 , f 4 ( x ) = 120 x 4 − 240 n 2 x 2 + 24 n 4 ( n 2 + x 2 ) 5 f^1(x)=\frac{-2x}{(n^2+x^2)^2},f^2(x)=\frac{6x^2-2n^2}{(n^2+x^2)^3}\\ f^3(x)=\frac{24x^3-24n^2x}{(n^2+x^2)^4},f^4(x)=\frac{120x^4-240n^2x^2+24n^4}{(n^2+x^2)^5} f1(x)=(n2+x2)22x,f2(x)=(n2+x2)36x22n2f3(x)=(n2+x2)424x324n2x,f4(x)=(n2+x2)5120x4240n2x2+24n4
所以有
原式 = ∫ 0 n 1 n 1 1 + ( x / n ) 2 d ( x / n ) + B 2 ( 2 ) ! − 2 x ( n 2 + x 2 ) 2 ∣ 0 n − 1 4 n 2 + O ( ∫ 0 n ∣ f 4 ( x ) ∣ d x ) = [ 1 n a r c t a n ( x n ) + − x 6 ( n 2 + x 2 ) 2 ] ∣ 0 n − 1 4 n 2 + O ( n − 5 ) = 1 4 π n − 1 − 1 4 n − 2 − 1 24 n − 3 + O ( n − 5 ) \begin{aligned} 原式&=\int^n_0\frac1{n}\frac1{1+(x/n)^2}d(x/n)+\frac{B_{2}}{(2)!}\frac{-2x}{(n^2+x^2)^2}|^n_0-\frac1{4n^2}+O(\int^n_0|f^4(x)|dx)\\ &=[\frac1{n}arctan(\frac x{n})+\frac{-x}{6(n^2+x^2)^2}]|^n_0-\frac1{4n^2}+O(n^{-5})\\ &=\frac14\pi n^{-1}-\frac 14 n^{-2}-\frac1 {24}n^{-3}+O(n^{-5}) \end{aligned} 原式=0nn11+(x/n)21d(x/n)+(2)!B2(n2+x2)22x0n4n21+O(0nf4(x)dx)=[n1arctan(nx)+6(n2+x2)2x]0n4n21+O(n5)=41πn141n2241n3+O(n5)

5.

在这里插入图片描述


A n = ∑ k ( 2 n k ) 3 = ∑ k ( 2 n n + k ) 3 = ∑ k ( ( 2 n ) ! ( n + k ) ! ( n − k ) ! ) 3 ( ( 2 n ) ! ( n + k ) ! ( n − k ) ! ) 3 = a k ( n ) = b k ( n ) + O ( c k ( n ) ) , k ∈ D n A_n=\sum_k\binom {2n}k^3=\sum_k\binom {2n}{n+k}^3=\sum_k(\frac{(2n)!}{(n+k)!(n-k)!})^3\\ (\frac{(2n)!}{(n+k)!(n-k)!})^3=a_k(n)=b_k(n)+O(c_k(n)),k\in D_n An=k(k2n)3=k(n+k2n)3=k((n+k)!(nk)!(2n)!)3((n+k)!(nk)!(2n)!)3=ak(n)=bk(n)+O(ck(n)),kDn

A n = ∑ k b k ( n ) + O ( ∑ k ∉ D n a k ( n ) ) + O ( ∑ k ∉ D n b k ( n ) ) + O ( ∑ k ∈ D n c k ( n ) ) A_n=\sum_kb_k(n)+O(\sum_{k \notin D_n}a_k(n))+O(\sum_{k \notin D_n}b_k(n))+O(\sum_{k \in D_n}c_k(n)) An=kbk(n)+O(k/Dnak(n))+O(k/Dnbk(n))+O(kDnck(n))

ϵ 为一个很小的正常数, k ∈ D n ⇔ ∣ k ∣ ≤ n 1 / 2 + ϵ \epsilon为一个很小的正常数,k\in D_n \Leftrightarrow|k|\leq n^{1/2+\epsilon} ϵ为一个很小的正常数,kDnkn1/2+ϵ

l n a k ( n ) = 3 ( l n ( 2 n ) ! − l n ( n + k ) ! − l n ( n − k ) ! ) = 3 ( ( 2 n + 1 2 ) l n 2 − σ − 1 2 l n n + O ( n − 1 ) − ( n + k + 1 2 ) l n ( 1 + k / n ) − ( n − k + 1 2 ) l n ( 1 − k / n ) ) = 3 ( ( 2 n + 1 2 ) l n 2 − σ − 1 2 l n n − k 2 + O ( n − 1 / 2 + 3 ϵ ) ) \begin{aligned} lna_k(n)&=3(ln(2n)!-ln(n+k)!-ln(n-k)!)\\ &=3((2n+\frac12)ln2-\sigma-\frac12lnn+O(n^{-1})-(n+k+\frac12)ln(1+k/n)\\ &-(n-k+\frac12)ln(1-k/n))\\ &=3((2n+\frac12)ln2-\sigma-\frac12lnn-k^2+O(n^{-1/2+3\epsilon}))\\ \end{aligned} lnak(n)=3(ln(2n)!ln(n+k)!ln(nk)!)=3((2n+21)ln2σ21lnn+O(n1)(n+k+21)ln(1+k/n)(nk+21)ln(1k/n))=3((2n+21)ln2σ21lnnk2+O(n1/2+3ϵ))
两边取指数有
a k ( n ) = ( 2 2 n + 1 / 2 e σ n e − k 2 / n ) 3 ( 1 + O ( n − 1 / 2 + 3 ϵ ) ) b k ( n ) = ( 2 2 n + 1 / 2 e σ n e − k 2 / n ) 3 , c k ( n ) = 2 6 n n − 2 + 3 ϵ e − 3 k 2 / n a_k(n)=(\frac{2^{2n+1/2}}{e^\sigma\sqrt n}e^{-k^2/n})^3(1+O(n^{-1/2+3\epsilon}))\\ b_k(n)=(\frac{2^{2n+1/2}}{e^\sigma\sqrt n}e^{-k^2/n})^3,c_k(n)=2^{6n}n^{-2+3\epsilon}e^{-3k^2/n} ak(n)=(eσn 22n+1/2ek2/n)3(1+O(n1/2+3ϵ))bk(n)=(eσn 22n+1/2ek2/n)3,ck(n)=26nn2+3ϵe3k2/n
所以主要部分有
∑ k b k ( n ) = ( 2 2 n + 1 / 2 e σ n ) 3 ∑ k e − 3 k 2 / n = ( 2 2 n + 1 / 2 e σ n ) 3 ⊝ n = ( 2 2 n + 1 / 2 e σ n ) 3 ( π n / 3 + O ( n − M ) ) = 2 6 n 3 π n ( 1 + O ( n − M ) ) \sum_kb_k(n)=(\frac{2^{2n+1/2}}{e^\sigma\sqrt n})^3\sum_ke^{-3k^2/n}=(\frac{2^{2n+1/2}}{e^\sigma\sqrt n})^3\circleddash_n\\ =(\frac{2^{2n+1/2}}{e^\sigma\sqrt n})^3(\sqrt{\pi n/3}+O(n^{-M}))=\frac{2^{6n}}{\sqrt3\pi n}(1+O(n^{-M})) kbk(n)=(eσn 22n+1/2)3ke3k2/n=(eσn 22n+1/2)3n=(eσn 22n+1/2)3(πn/3 +O(nM))=3 πn26n(1+O(nM))
误差有
∑ k ∈ D n c k ( n ) = ∑ ∣ k ∣ ≤ n 1 / 2 + ϵ 2 6 n n − 2 + 3 ϵ e − 3 k 2 / n ≤ 2 6 n n − 2 + 3 ϵ ⊝ n = O ( 2 6 n n − 3 / 2 + 3 ϵ ) ∑ k > n 1 / 2 + ϵ e − 3 k 2 / n = < e x p ( − 3 ⌊ n 1 / 2 + ϵ ⌋ / n ) O ( n ) = O ( n e − 3 n 2 ϵ ) , 对所有 M 等于 O ( n − M ) \sum_{k \in D_n}c_k(n)=\sum_{|k|\leq n^{1/2+\epsilon}}2^{6n}n^{-2+3\epsilon}e^{-3k^2/n}\leq2^{6n}n^{-2+3\epsilon}\circleddash_n=O(2^{6n}n^{-3/2+3\epsilon})\\ \sum_{k> n^{1/2+\epsilon}}e^{-3k^2/n}=<exp(-3\lfloor n^{1/2+\epsilon}\rfloor/n )O(n)=O(ne^{-3n^{2\epsilon}}),对所有M等于O(n^{-M})\\ kDnck(n)=kn1/2+ϵ26nn2+3ϵe3k2/n26nn2+3ϵn=O(26nn3/2+3ϵ)k>n1/2+ϵe3k2/n=<exp(3n1/2+ϵ/n)O(n)=O(ne3n2ϵ),对所有M等于O(nM)
所以 ∑ k ∉ D n b k ( n ) \sum_{k \notin D_n}b_k(n) k/Dnbk(n)可以忽略不计
∑ k ∉ D n a k ( n ) = ∑ k > n 1 / 2 + ϵ ( 2 n n + k ) 3 \sum_{k \notin D_n}a_k(n)=\sum_{k> n^{1/2+\epsilon}}\binom{2n}{n+k}^3 k/Dnak(n)=k>n1/2+ϵ(n+k2n)3
类似 ∑ k ∉ D n b k ( n ) \sum_{k \notin D_n}b_k(n) k/Dnbk(n),这一项也可以忽略不计,因此有
∑ k ( 2 n k ) 3 = 2 6 n 3 π n ( 1 + O ( n − M ) ) + O ( 2 6 n n − 3 / 2 + 3 ϵ ) = 2 6 n 3 π n ( 1 + O ( n − 1 / 2 + 3 ϵ ) ) \sum_k\binom {2n}k^3=\frac{2^{6n}}{\sqrt3\pi n}(1+O(n^{-M}))+O(2^{6n}n^{-3/2+3\epsilon})\\ =\frac{2^{6n}}{\sqrt3\pi n}(1+O(n^{-1/2+3\epsilon})) k(k2n)3=3 πn26n(1+O(nM))+O(26nn3/2+3ϵ)=3 πn26n(1+O(n1/2+3ϵ))
只要令 ϵ < 1 12 \epsilon<\frac1{12} ϵ<121即可

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值