中科大计算机数学作业解答二(参考书:具体数学)

Problem 1. Modify QuickSort algorithm to find the kth largest number: Given k and a sequence of n numbers a1, . . . , an (not sorted), output the kth largest number.
(1) Show the pseudo-code of your algorithm.
\\java代码进行表述
public class QuickSort  {
	public static void main(String[] args) {
        int[] nums;\\定义数组
        int top;\\top用来表示k
        int topk = topk(nums, 0, nums.length -1, top - 1);
		\\打印元素
     	System.out.println(topk);
    }

    public static int topk(int[] nums, int start, int end, int k) {
        \\正常快排过程,数组第一个元素作为piovt,只是改变了排序顺序,从大到小进行排序,满足后续给出kth大元素
        int target = nums[start];
        int i = start;  
        int j = end;
        while (i < j) {
            \\这里改变比较条件,将大的元素放到piovt前,小的放在后面
            while (i < j && nums[j] <= target) j--;  
            while (i < j && nums[i] >= target) i++;
            if (i < j) swap(nums, i, j);
        }
        swap(nums, start, i);
		\\递归调用该函数,直至选中的piovt在交换完位置后在k号位置(下标k-1),此时kth大元素在他正确的位置,否则选择包含kth大元素的划分继续进行划分
        if (i < k) return topk(nums, i + 1, end, k);
        else if (i > k) return topk(nums, start, i - 1, k);
        else return nums[i];
    }

    public static void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }
}
(2) Prove its expected running time is O(n) by the probability argument about comparing pairs of elements.

根据Thomas H.Cormen,Charles E.Leiserson等人所著《算法导论第三版》的第七章关于快速排序时间复杂度概率算法的介绍(在汉化版的102页附近)讨论该算法时间复杂度。

在原算法中,对于序列 { z i . . . z j } \{z_i ... z_j\} {zi...zj}中元素 z i z_i zi z j z_j zj会进行比较当且仅当其中一个被选为piovt,在此基础上观察(1)中算法,当上一轮进行划分时,不包含kth大元素的划分将被丢弃,如
{ z i . . . z k . . . z j } z p i o c t { 被丢弃划分 } \{z_i...z_k...z_j\}z_{pioct}\{被丢弃划分\} {zi...zk...zj}zpioct{被丢弃划分}
即对于该序列中元素 z i z_i zi z j z_j zj会进行比较不仅要求其中一个被选为piovt,还要求该序列内包含kth大元素。根据《算法导论》进行快排时,两个元素进行比较的概率是 2 j − i + 1 \frac{2}{j-i+1} ji+12,同时,kth大元素在该序列的概率为该序列长度与原始数组长度的比,也就是 j − i + 1 n \frac{j-i+1}{n} nji+1,因此基础进行计算
E [ X ] = ∑ i = 1 n − 1 ∑ j = i + 1 n 2 j − i + 1 j − i + 1 n = ∑ i = 1 n − 1 ∑ j = i + 1 n 2 n = ∑ i = 1 n − 1 n − i n = ( n − 1 ) ( n − 1 + 1 ) n = O ( n ) \begin{aligned} E[X]&=\displaystyle\sum^{n-1}_{i=1}\displaystyle\sum^{n}_{j=i+1}\frac{2}{j-i+1}\frac{j-i+1}{n}\\ &=\displaystyle\sum^{n-1}_{i=1}\displaystyle\sum^{n}_{j=i+1}\frac{2}{n}\\ &=\displaystyle\sum^{n-1}_{i=1}\frac{n-i}{n}\\ &=\frac{(n-1)(n-1+1)}{n}\\ &=O(n) \end{aligned} E[X]=i=1n1j=i+1nji+12nji+1=i=1n1j=i+1nn2=i=1n1nni=n(n1)(n1+1)=O(n)

Problem 2. Prove that Euclid’s algorithm to compute gcd(m, n) runs in time O(log m+ log n) assuming all integer-operations are done in O(1) time.

假设按轮次递归调用该算法进行辗转相除法,在任意轮次,用a代表较大的数,b代表较小的数,则在该轮运算结束后(进行mod除后,还未交换a与b两数的值),a的值至少会减小为 a 2 \frac{a}{2} 2a,以下证明:

a ≥ 2 b a\geq{2b} a2b,则 a m o d b < b ≤ a 2 a \quad mod \quad b <b\leq{\frac{a}{2}} amodb<b2a;

b ≤ a < 2 b b\leq{a}<2b ba<2b,则 a − 2 b < 0 ⇒ a 2 − b < 0 ⇒ a − b < a 2 a-2b<0\Rightarrow\frac{a}{2}-b<0 \Rightarrow a-b<\frac{a}{2} a2b<02ab<0ab<2a,进行模运算后 a m o d b = a − b < a 2 a\quad mod \quad b = a-b<\frac{a}{2} amodb=ab<2a

显然该算法最坏情况为,输入的m与n互素,最后结果为1,同时每次运算,较大的数仅变为原值的 1 2 \frac{1}{2} 21(经过上面证明该情况取不到,但是作为下限进行证明)。此时从1分别增大到m与n的时间复杂度分别为log m与log n,因此将m与n辗转相除的时间复杂度为O(log m+log n),此为算法下限。

Problem 3. (1) Exercise 14 in Chapter 2 (2nd Edition).

∑ k = 1 n k 2 k \displaystyle \sum^{n}_{k=1}k2^k k=1nk2k改写成 ∑ 1 ≤ j ≤ k ≤ n 2 k \displaystyle \sum_{1\leq{j}\leq{k}\leq{n}}2^k 1jkn2k进行计算

易知 ∑ j = 1 k 1 = k \displaystyle \sum^{k}_{j=1}1 = k j=1k1=k,因此可以将 k 2 k k2^{k} k2k理解为k个 2 k 2^k 2k叠加再求和,可将 ∑ k = 1 n k 2 k \displaystyle \sum^{n}_{k=1}k2^k k=1nk2k可以改写成 ∑ k = 1 n ∑ j = 1 k 2 k \displaystyle \sum^{n}_{k=1} \displaystyle \sum^{k}_{j=1}2^k k=1nj=1k2k,根据课本(2.32)进一步变换为即可得到 ∑ 1 ≤ j ≤ k ≤ n 2 k \displaystyle \sum_{1\leq{j}\leq{k}\leq{n}}2^k 1jkn2k,进一步改写该式得到 ∑ j = 1 n ∑ k = j n 2 k \displaystyle \sum^{n}_{j=1} \displaystyle \sum^{n}_{k=j}2^k j=1nk=jn2k,以该式为基础继续计算
∑ j = 1 n ∑ k = j n 2 k = ∑ j = 1 n ( 2 n + 1 − 2 j ) 等比数列求和 = n × 2 n + 1 − ∑ j = 1 n 2 j = n × 2 n + 1 − 2 n + 1 + 2 \begin{aligned} \displaystyle \sum^{n}_{j=1} \displaystyle \sum^{n}_{k=j}2^k&=\displaystyle \sum^{n}_{j=1}(2^{n+1}-2^j) \quad\quad等比数列求和\\ &=n\times2^{n+1}-\displaystyle \sum^{n}_{j=1}2^j \\ &=n\times2^{n+1}-2^{n+1}+2 \end{aligned} j=1nk=jn2k=j=1n(2n+12j)等比数列求和=n×2n+1j=1n2j=n×2n+12n+1+2

(1) Exercise 15 in Chapter 2 (2nd Edition).

在这里插入图片描述

利用方法5计算 ∑ k = 1 n k 3 \displaystyle \sum^n_{k=1}k^3 k=1nk3,由于符号输入原因,立方叠加与平方叠加都用 ∑ \sum 的形式表达,根据题目提示有
∑ k = 1 n k 3 + ∑ k = 1 n k 2 = 2 ∑ 1 ≤ j ≤ k ≤ n j k = 2 × 1 2 ( ( ∑ k = 1 n k ) 2 + ∑ k = 1 n k 2 ) = ( ∑ k = 1 n k ) 2 + ∑ k = 1 n k 2 \begin{aligned} \displaystyle \sum^n_{k=1}k^3+\displaystyle \sum^n_{k=1}k^2 &=2\displaystyle \sum_{1\leq{j}\leq{k}\leq{n}}jk\\ &=2\times\frac{1}{2}((\displaystyle \sum^n_{k=1}k)^2+\displaystyle \sum^n_{k=1}k^2)\\ &=(\displaystyle \sum^n_{k=1}k)^2+\displaystyle \sum^n_{k=1}k^2 \end{aligned} k=1nk3+k=1nk2=21jknjk=2×21((k=1nk)2+k=1nk2)=(k=1nk)2+k=1nk2
两边同时减去 ∑ k = 1 n k 2 \displaystyle \sum^n_{k=1}k^2 k=1nk2
∑ k = 1 n k 3 = ( ∑ k = 1 n k ) 2 = ( ( 1 + n ) n 2 ) 2 \begin{aligned} \displaystyle \sum^n_{k=1}k^3&=(\displaystyle \sum^n_{k=1}k)^2\\ &=(\frac{(1+n)n}{2})^2 \end{aligned} k=1nk3=(k=1nk)2=(2(1+n)n)2

Problem 4. (1) Exercise 10 in Chapter 3 (2nd Edition).

在这里插入图片描述

证明 ⌈ 2 x + 1 2 ⌉ − ⌈ 2 x + 1 4 ⌉ + ⌊ 2 x + 1 4 ⌋ \lceil \frac{2x+1}{2}\rceil - \lceil \frac{2x+1}{4}\rceil+\lfloor \frac{2x+1}{4}\rfloor 22x+142x+1+42x+1总是等于 ⌊ x ⌋ \lfloor x\rfloor x ⌈ x ⌉ \lceil x\rceil x

只有当 2 x + 1 4 \frac{2x+1}{4} 42x+1为整数时,其的顶与底相等,否则 ( − ⌈ 2 x + 1 4 ⌉ + ⌊ 2 x + 1 4 ⌋ ) = − 1 (- \lceil \frac{2x+1}{4}\rceil+\lfloor \frac{2x+1}{4}\rfloor)=-1 (42x+1+42x+1⌋)=1,以此为划分进行讨论

1.当 2 x + 1 4 \frac{2x+1}{4} 42x+1为整数时,即 2 x + 1 4 = k , k ∈ z \frac{2x+1}{4}=k,k\in{z} 42x+1=kkz,此时有 x = 2 k − 1 2 , { x } = 1 2 x=2k-\frac{1}{2},\{x\}=\frac{1}{2} x=2k21,{x}=21

原式 = ⌈ 2 x + 1 2 ⌉ = ⌈ 4 k − 1 + 1 2 ⌉ = ⌈ 2 k ⌉ = 2 k 原式=\lceil \frac{2x+1}{2}\rceil=\lceil \frac{4k-1+1}{2}\rceil=\lceil 2k\rceil=2k 原式=22x+1=24k1+1=2k=2k

又因为:
x = 2 k − 1 2 , k ∈ z x=2k-\frac{1}{2},k\in{z} x=2k21,kz

所以有:
⌈ x ⌉ = ⌈ 2 k − 1 2 ⌉ = 2 k = 原式 \lceil x \rceil =\lceil 2k-\frac{1}{2}\rceil=2k=原式 x=2k21=2k=原式

x = 2 k − 1 2 , k ∈ z x=2k-\frac{1}{2},k\in{z}\quad x=2k21,kz时,有原式= ⌈ x ⌉ \lceil x \rceil x

2.当 x = 2 k − 3 2 , k ∈ z x=2k-\frac{3}{2},k\in{z}\quad x=2k23,kz x − 1 2 = 2 k − 2 = ⌊ x ⌋ x-\frac{1}{2}=2k-2=\lfloor x \rfloor x21=2k2=x,原式有
⌈ 2 x + 1 2 ⌉ − ⌈ 2 x + 1 4 ⌉ + ⌊ 2 x + 1 4 ⌋ = ⌈ 2 ( 2 k − 3 2 ) + 1 2 ⌉ − ⌈ 2 ( 2 k − 3 2 ) + 1 4 ⌉ + ⌊ 2 ( 2 k − 3 2 ) + 1 4 ⌋ = ⌈ 4 k − 3 + 1 2 ⌉ − ⌈ 4 k − 3 + 1 4 ⌉ + ⌊ 4 k − 3 + 1 4 ⌋ = ⌈ 4 k − 3 + 1 2 ⌉ − 1 = 2 k − 2 = x − 1 2 = ⌊ x ⌋ \begin{aligned} \lceil \frac{2x+1}{2}\rceil - \lceil \frac{2x+1}{4}\rceil+\lfloor \frac{2x+1}{4}\rfloor&=\lceil \frac{2(2k-\frac{3}{2})+1}{2}\rceil- \lceil \frac{2(2k-\frac{3}{2})+1}{4}\rceil+\lfloor \frac{2(2k-\frac{3}{2})+1}{4}\rfloor\\ &=\lceil \frac{4k-3+1}{2}\rceil- \lceil \frac{4k-3+1}{4}\rceil+\lfloor \frac{4k-3+1}{4}\rfloor\\ &=\lceil \frac{4k-3+1}{2}\rceil- 1\\ &=2k-2\\ &=x-\frac{1}{2}=\lfloor x \rfloor \\ \end{aligned} 22x+142x+1+42x+1=22(2k23)+142(2k23)+1+42(2k23)+1=24k3+144k3+1+44k3+1=24k3+11=2k2=x21=x

3.当 0 ≤ { x } < 1 2 0\leq\{x\}<\frac{1}{2} 0{x}<21,有 1 2 ≤ { x + 1 2 } < 1 \frac{1}{2}\leq\{x+\frac{1}{2}\}<1 21{x+21}<1
原式 = ⌈ 2 x + 1 2 ⌉ − 1 = ⌈ x + 1 2 ⌉ − 1 = ⌈ x ⌉ − 1 = ⌊ x ⌋ 原式=\lceil \frac{2x+1}{2}\rceil -1=\lceil x+\frac{1}{2}\rceil -1=\lceil x\rceil -1=\lfloor x \rfloor 原式=22x+11=x+211=x1=x

4.当 1 2 < { x } \frac{1}{2}<\{x\} 21<{x},有 0 < { x + 1 2 } ≤ 1 2 a n d ⌈ x + 1 2 ⌉ = ⌈ x ⌉ + 1 0<\{x+\frac{1}{2}\}\leq{\frac{1}{2}}\quad and \quad \lceil x+\frac{1}{2} \rceil = \lceil x\rceil+1 0<{x+21}21andx+21=x+1
原式 = ⌈ 2 x + 1 2 ⌉ − 1 = ⌈ x + 1 2 ⌉ − 1 = ⌈ x ⌉ + 1 − 1 = ⌈ x ⌉ 原式=\lceil \frac{2x+1}{2}\rceil -1=\lceil x+\frac{1}{2}\rceil -1=\lceil x\rceil +1-1=\lceil x \rceil 原式=22x+11=x+211=x+11=x

总结:当 1 2 < { x } < 1 \frac{1}{2} <\{x\} <1 21<{x}<1时原式等于$\lceil x \rceil $;当 0 ≤ { x } < 1 2 0 \leq\{ x \} < \frac{1}{2} 0{x}<21时原式等于 ⌊ x ⌋ \lfloor x \rfloor x; x = 2 k − 1 2 , k ∈ z x=2k-\frac{1}{2},k\in{z}\quad x=2k21,kz时,有原式= ⌈ x ⌉ \lceil x \rceil x x = 2 k − 3 2 , k ∈ z x=2k-\frac{3}{2},k\in{z}\quad x=2k23,kz时,有原式= ⌊ x ⌋ \lfloor x \rfloor x

也就是 { x } = 1 2 \{x\}=\frac{1}{2} {x}=21时,原式等于其最接近的偶数,否则为最接近的整数。

(2) Exercise 23 in Chapter 3 (2nd Edition).

在这里插入图片描述

令第n个元素的值为 A k A_k Ak,他在该序列中的位置为n(从1开始计算),可以对序列进行观察得到, A k A_k Ak的第一个元素之前共有1个1,2个2… A k − 1 A_{k-1} Ak1 A k − 1 A_{k-1} Ak1,在此之后,有 A k A_k Ak A k A_k Ak.为了方便计算,令 A k = m A_{k}=m Ak=m,则有第一个值为m的元素位置为:
1 2 ( m − 1 + 1 ) ( m − 1 ) + 1 = 1 2 m ( m − 1 ) + 1 \frac{1}{2}(m-1+1)(m-1)+1 =\frac{1}{2}m(m-1)+1 21(m1+1)(m1)+1=21m(m1)+1
最后一个元素的位置为:
1 2 m ( m − 1 ) + 1 + ( m − 1 ) = 1 2 m ( m + 1 ) \frac{1}{2}m(m-1)+1+(m-1)=\frac{1}{2}m(m+1) 21m(m1)+1+(m1)=21m(m+1)
也就是位置为范围 ( 1 2 m ( m − 1 ) , 1 2 m ( m + 1 ) ] (\frac{1}{2}m(m-1),\frac{1}{2}m(m+1)] (21m(m1),21m(m+1)]的范围内, A k A_k Ak的取值都为m,也就是n的范围在:
1 2 m ( m − 1 ) < n ≤ 1 2 m ( m + 1 ) \frac{1}{2}m(m-1)<n\leq{\frac{1}{2}m(m+1)} 21m(m1)<n21m(m+1)
不等式同时乘2去除分数有:
m ( m − 1 ) < 2 n ≤ m ( m + 1 ) m(m-1)<2n\leq{m(m+1)} m(m1)<2nm(m+1)
又由于m和n都是整数,因此可以在不等式两端添加 1 4 \frac{1}{4} 41凑成平方式有:
m ( m − 1 ) + 1 4 < 2 n < m ( m + 1 ) + 1 4 m(m-1)+\frac{1}{4}<2n<m(m+1)+\frac{1}{4} m(m1)+41<2n<m(m+1)+41
此时不等式右侧取不到等于,又由于m与n最小为1,因此不等式三部分都是正数,开方则有
m − 1 2 < 2 n < m + 1 2 m < 2 n + 1 2 < m + 1 m-\frac{1}{2}<\sqrt{2n}<m+\frac{1}{2}\\ m<\sqrt{2n}+\frac{1}{2}<m+1 m21<2n <m+21m<2n +21<m+1
A n = m = ⌊ 2 n + 1 2 ⌋ A_n= m = \lfloor \sqrt{2n}+\frac{1}{2} \rfloor An=m=2n +21 (根据课本3.5,显然不等式左边的不等号并不是 ≤ \leq 符号也可以得到该结论)

Problem 5. Exercise 28 in Chapter 3 (2nd Edition)


在这里插入图片描述

a 0 = 1 , a n = a n − 1 + ⌊ a n − 1 ⌋ a_0=1,a_n=a_{n-1}+\lfloor \sqrt{a_{n-1}} \rfloor a0=1,an=an1+an1 ,求解 a n a_n an的递推式

难以直接看出规律,计算前几项的值如下:

序号0123456789101112
12346810131620242833
序号13141516171819202122232425
384450576472808897106116126137

可以观察到 a 3 = 4 , a 8 = 16 , a 17 = 64 a_3=4,a_8=16,a_{17}=64 a3=4,a8=16,a17=64,推测存在以 ( 2 k ) 2 (2k)^2 (2k)2为基准的递推关系,通过程序计算可得 a 34 = 256 = ( 2 × 8 ) 2 , a 67 = 1024 = ( 2 × 16 ) 2 , a 132 = 4096 ( 2 × 32 ) 2 a_{34}=256=(2\times8)^2,a_{67}=1024=(2\times16)^2,a_{132}=4096(2\times32)^2 a34=256=(2×8)2,a67=1024=(2×16)2,a132=4096(2×32)2,且每两项之间的下标间隔2k+1。设 2 k = m , 即 a n = m 2 2k = m,即a_n=m^2 2k=m,an=m2,则有这样的观察:

a n + 2 k + 1 = ( m + k ) 2 + m − k , a n + 2 k + 2 = ( m + k ) 2 + 2 m a_{n+2k+1}=(m+k)^2+m-k,a_{n+2k+2}=(m+k)^2+2m an+2k+1=(m+k)2+mk,an+2k+2=(m+k)2+2m,

接下来通过数学归纳法证明:

m = 2 时: a 3 = 4 , a 4 = ( 2 + 0 ) 2 + 2 − 0 = 6 , a 5 = ( 2 + 0 ) 2 + 2 × 2 = 8 m=2时:a_3=4,a_4=(2+0)^2+2-0=6,a_5=(2+0)^2+2\times2=8 m=2时:a3=4,a4=(2+0)2+20=6,a5=(2+0)2+2×2=8

假设有 a n = m 2 , a n + 2 k + 1 = ( m + k ) 2 + m − k , a n + 2 k + 2 = ( m + k ) 2 + 2 m a_n=m^2,a_{n+2k+1}=(m+k)^2+m-k,a_{n+2k+2}=(m+k)^2+2m an=m2,an+2k+1=(m+k)2+mk,an+2k+2=(m+k)2+2m成立,证明k+1的情况:

首先有这样的观察, ( k + 1 ) 2 − k 2 = 2 k + 1 (k+1)^2-k^2=2k+1 (k+1)2k2=2k+1,对于任意 k 2 ≤ a < ( k + 1 ) 2 k^2\leq{a}<(k+1)^2 k2a<(k+1)2 ⌊ a ⌋ = k \lfloor \sqrt{a} \rfloor=k a =k

当k=0时:
a n + 1 = a n + ⌊ a n ⌋ = m 2 + m a n + 2 = a n + 1 + ⌊ a n + 1 ⌋ = m 2 + m + ⌊ m 2 + m ⌋ = m + 2 m \begin{aligned} a_{n+1}&=a_n+\lfloor \sqrt{a_n} \rfloor\\ &=m^2+m\\ a_{n+2}&=a_{n+1}+\lfloor \sqrt{a_{n+1}} \rfloor\\ &=m^2+m+\lfloor \sqrt{m^2+m} \rfloor\\ &=m+2m \end{aligned} an+1an+2=an+an =m2+m=an+1+an+1 =m2+m+m2+m =m+2m
成立。

当k≠0时:假设k值为k时成立,则k值为k+1情况证明如下
a n + 2 k + 3 = a n + 2 k + 1 + ⌊ a n + 2 k + 1 ⌋ + ⌊ a n + 2 k + 2 ⌋ = ( m + k ) 2 + m − k + ⌊ ( m + k ) 2 + m − k ⌋ + ⌊ ( m + k ) 2 + 2 m ⌋ = ( m + k ) 2 + m − k + ( m + k ) + ( m + k ) = ( m + k + 1 ) 2 + m − ( k + 1 ) a n + 2 k + 4 = a n + 2 k + 2 + ⌊ a n + 2 k + 2 ⌋ + ⌊ a n + 2 k + 3 ⌋ = ( m + k ) 2 + 2 m + ⌊ ( m + k ) 2 + 2 m ⌋ + ⌊ ( m + k + 1 ) 2 + m − ( k + 1 ) ⌋ = ( m + k ) 2 + 2 m + ( m + k ) + ( m + k + 1 ) = ( m + k + 1 ) 2 + 2 m \begin{aligned} a_{n+2k+3}&=a_{n+2k+1}+\lfloor \sqrt{a_{n+2k+1}} \rfloor+\lfloor \sqrt{a_{n+2k+2}} \rfloor\\ &=(m+k)^2+m-k+\lfloor \sqrt{(m+k)^2+m-k} \rfloor+\lfloor \sqrt{(m+k)^2+2m} \rfloor\\ &=(m+k)^2+m-k+(m+k)+(m+k) \\ &=(m+k+1)^2+m-(k+1) \\ a_{n+2k+4}&=a_{n+2k+2}+\lfloor \sqrt{a_{n+2k+2}} \rfloor+\lfloor \sqrt{a_{n+2k+3}} \rfloor\\ &=(m+k)^2+2m+\lfloor \sqrt{(m+k)^2+2m} \rfloor+\lfloor \sqrt{(m+k+1)^2+m-(k+1)} \rfloor\\ &=(m+k)^2+2m+(m+k)+(m+k+1) \\ &=(m+k+1)^2+2m \\ \end{aligned} an+2k+3an+2k+4=an+2k+1+an+2k+1 +an+2k+2 =(m+k)2+mk+(m+k)2+mk +(m+k)2+2m =(m+k)2+mk+(m+k)+(m+k)=(m+k+1)2+m(k+1)=an+2k+2+an+2k+2 +an+2k+3 =(m+k)2+2m+(m+k)2+2m +(m+k+1)2+m(k+1) =(m+k)2+2m+(m+k)+(m+k+1)=(m+k+1)2+2m
成立。

当k=m时,也就是 a n + 2 m + 1 a_{n+2m+1} an+2m+1的情况,该元素的值应为 ( 2 m ) 2 (2m)^2 (2m)2,证明如下
a n + 2 m + 1 + ( m + m ) 2 + m − m = ( 2 m ) 2 \begin{aligned} a_{n+2m+1}&+(m+m)^2+m-m=(2m)^2\\ \end{aligned} an+2m+1+(m+m)2+mm=(2m)2

因此原假设成立,现在改写成更简单的形式:

1.首先计算值为 ( 2 k ) 2 (2k)^2 (2k)2的项的元素下标,将该下标用 b l b_l bl表示,有以下规律:
b 1 = 2 1 + 1 = 3 b 2 = b 1 + 2 2 + 1 = 8 b 3 = b 2 + 2 3 + 1 = 17 … … … … b l = b l − 1 + 2 l + 1 b_1=2^1+1=3\\ b_2=b_1+2^2+1=8\\ b_3=b_2+2^3+1=17\\ …………\\ b_l=b_{l-1}+2^l+1 b1=21+1=3b2=b1+22+1=8b3=b2+23+1=17…………bl=bl1+2l+1
很容易得到递推关系: b l = 2 l + 1 + l − 2 b_l=2^{l+1}+l-2 bl=2l+1+l2

2.对于任意 n ∈ ( 2 l + 1 + l − 2 , 2 l + 2 + l − 1 ] n \in (2^{l+1}+l-2,2^{l+2}+l-1] n(2l+1+l2,2l+2+l1],有上文关于 a n a_n an的递推关系存在,即 a n + 2 k + 1 = ( m + k ) 2 + m − k , a n + 2 k + 2 = ( m + k ) 2 + 2 m a_{n+2k+1}=(m+k)^2+m-k,a_{n+2k+2}=(m+k)^2+2m an+2k+1=(m+k)2+mk,an+2k+2=(m+k)2+2m,令此处n为 b l b_l bl, 2 k + 1 或 2 k + 2 2k+1或2k+2 2k+12k+2 o f f s e t offset offset,同时可以得到 m = 2 l m=2^{l} m=2l(上面两句的n表示不同含义,第一句的任意n指的是 a n a_n an的下标n,后面的n指的是数列 a n + 2 k + 1 a_{n+2k+1} an+2k+1的递推式的下标中的第一个n,这个n也就是上一步得到的递推关系中的 b l b_l bl,是平方项元素的下标,因此后文中用 b l b_l bl表示).则有

o f f s e t = n − b l = n − 2 l + 1 − l + 2 offset=n-b_l=n-2^{l+1}-l+2 offset=nbl=n2l+1l+2

1)offset为偶数情况:

2 k + 2 = n − 2 l + 1 − l + 2 ⇒ k = n − l 2 − 2 l 2k+2=n-2^{l+1}-l+2 \quad\quad \Rightarrow \quad k=\frac{n-l}{2}-2^l 2k+2=n2l+1l+2k=2nl2l

则有

a n = a b l + 2 k + 2 = ( m + k ) 2 + 2 m = ( 2 l − 2 l + n − l 2 ) 2 + 2 × 2 l = ( n − l 2 ) 2 + 2 l + 1 a_n=a_{b_l+2k+2}=(m+k)^2+2m=(2^l-2^l+\frac{n-l}{2})^2+2\times 2^l=(\frac{n-l}{2})^2+ 2^{l+1} an=abl+2k+2=(m+k)2+2m=(2l2l+2nl)2+2×2l=(2nl)2+2l+1

2)offset为奇数情况:

2 k + 1 = n − 2 l + 1 − l + 2 ⇒ k = n − l + 1 2 − 2 l 2k+1=n-2^{l+1}-l+2 \quad\quad \Rightarrow \quad k=\frac{n-l+1}{2}-2^l 2k+1=n2l+1l+2k=2nl+12l

则有
a n = a b l + 2 k + 1 = ( m + k ) 2 + m − k = ( 2 l − 2 l + n − l + 1 2 ) 2 + 2 l − ( − 2 l + n − l + 1 2 ) = ( n − l + 1 2 ) 2 − n − l + 1 2 + 2 l + 1 = ( n − l + 1 2 ) ( n − l − 1 2 ) + 2 l + 1 = ( n − l 2 ) 2 − 1 4 + 2 l + 1 \begin{aligned} a_n&=a_{b_l+2k+1}\\ &=(m+k)^2+m-k\\ &=(2^l-2^l+\frac{n-l+1}{2})^2+2^l-(-2^l+\frac{n-l+1}{2})\\ &=(\frac{n-l+1}{2})^2-\frac{n-l+1}{2}+2^{l+1}\\ &=(\frac{n-l+1}{2})(\frac{n-l-1}{2})+2^{l+1}\\ &=(\frac{n-l}{2})^2-\frac{1}{4}+2^{l+1} \quad\quad \end{aligned} an=abl+2k+1=(m+k)2+mk=(2l2l+2nl+1)2+2l(2l+2nl+1)=(2nl+1)22nl+1+2l+1=(2nl+1)(2nl1)+2l+1=(2nl)241+2l+1
根据递推式, a n 与 2 l + 1 a_n与2^{l+1} an2l+1必然为整数,因此 ( n − l 2 ) 2 − 1 4 (\frac{n-l}{2})^2-\frac{1}{4} 2nl)241必然也为整数,则有 ( n − l 2 ) 2 − 1 4 = ⌊ ( n − l 2 ) 2 ⌋ (\frac{n-l}{2})^2-\frac{1}{4}=\lfloor (\frac{n-l}{2})^2 \rfloor (2nl)241=⌊(2nl)2(相当于整数加上一个小数的底还是原整数),因此 a n = ⌊ ( n − l 2 ) 2 ⌋ + 2 l + 1 a_n=\lfloor (\frac{n-l}{2})^2 \rfloor+2^{l+1} an=⌊(2nl)2+2l+1

验证l=0时, a 1 = 2 , a 2 = 3 a_1=2,a_2=3 a1=2,a2=3也符合该式,总结有:

a 0 = 1 a_0=1 a0=1,

对于 ∀ n > 0 , n ∈ ( 2 l + 1 + l − 2 , 2 l + 2 + l − 1 ] , l ∈ N \forall n >0,n\in (2^{l+1}+l-2,2^{l+2}+l-1],l\in N n>0,n(2l+1+l2,2l+2+l1],lN,有 a n = ⌊ ( n − l 2 ) 2 ⌋ + 2 l + 1 a_n=\lfloor (\frac{n-l}{2})^2 \rfloor+2^{l+1} an=⌊(2nl)2+2l+1

说明:值为 ( 2 k ) 2 (2k)^2 (2k)2的元素可以理解为 a b l + 2 × 2 l + 1 , a_{b_l+2\times 2^l+1}, abl+2×2l+1,因此n的范围为左开右闭,也就是认为 a b l 是通过 a b l − 1 + 2 × 2 l − 1 + 1 a_{b_l}是通过a_{b_{l-1}+2\times 2^{l-1}+1} abl是通过abl1+2×2l1+1来计算

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值