《具体数学》部分习题解答7

7.1

一位古怪的多米诺骨牌搜集者,搜集了 2 × n 2 \times n 2×n 个骨牌。他为每个垂直的多米诺牌付 4 美元,而为每个水平的多米诺牌付 1 美元。根据这一标准,有多少种铺设恰好值 m m m 美元?例如当 m = 6 m=6 m=6 时有三个解.

\rule{1ex}{2ex} 表示一个垂直的多米诺牌
⊟ \boxminus 表示两个水平的多米诺牌
我们有:
T = ∣ ∣ − − ⊟ T = \dfrac{|}{| - \rule{1ex}{2ex} - \boxminus} T=

z z z 的指数表示搜集者支付的美元:
z 4 : 支 付 4 美 元 z 1 : 支 付 1 美 元 有 : T = 1 1 − z 4 − z 2 z^4 :支付 4 美元 \\ z^1 :支付 1 美元 \\ 有:T = \dfrac{1}{1-z^4-z^2} \\ z44z11T=1z4z21
m m m 为奇数时,明显不存在解
而当 m m m 为偶数时:
在这里插入图片描述

此时,有 F m 2 + 1 F_{ {\frac{m}{2}} + 1} F2m+1 种铺设方式

7.2

给出数列 ⟨ 2 , 5 , 13 , 35 , ⋯   ⟩ = ⟨ 2 n + 3 n ⟩ \langle 2, 5, 13, 35, \cdots \rangle = \langle 2^n + 3^n \rangle 2,5,13,35,=2n+3n 的生成函数和指数生成函数的封闭形式.

生成函数:
在这里插入图片描述

指数生成函数:
在这里插入图片描述

7.3

∑ n ⩾ 0 H n / 1 0 n \sum_{n \geqslant 0} H_n / 10^n n0Hn/10n 等于什么?

由公式:
1 ( 1 − z ) m + 1 ln ⁡ 1 1 − z = ∑ n ⩾ 0 ( H m + n − H m ) ( m + n n ) z n   . \boxed{\dfrac{1}{(1-z)^{m+1}} \ln{\dfrac{1}{1-z}} = \sum_{n \geqslant 0} (H_{m+n} - H_m) \binom{m+n}{n} z^n \ .} (1z)m+11ln1z1=n0(Hm+nHm)(nm+n)zn .
m = 0   ,   z = 1 0 − 1 m = 0 \ , \ z = 10^{-1} m=0 , z=101 得:
10 9 ln ⁡ 10 9 = ∑ n ⩾ 0 H n 1 0 n \dfrac{10}{9} \ln{\dfrac{10}{9}} = \sum_{n \geqslant 0} \dfrac{H_n}{10^n} 910ln910=n010nHn

7.4

有理函数 P ( z ) / Q ( z ) P(z) / Q(z) P(z)/Q(z) 的一般展开定理并不完全是一般性的,因为它要求 P P P 的次数小于 Q Q Q 的次数。如果 P P P 有更大的次数,将会发生什么?

如果 P P P 有更大的次数,则 P ( z ) / Q ( z ) P(z)/Q(z) P(z)/Q(z) 得到的商 T ( z ) T(z) T(z) ,在 n n n 较小的时候,不能忽略不计,必须加到 [ z n ] P ( z ) / Q ( z ) [z^n] P(z) / Q(z) [zn]P(z)/Q(z) 中.

7.5

求一个生成函数 S ( z ) S(z) S(z) ,使得:
[ z n ] S ( z ) = ∑ k ( r k ) ( r n − 2 k ) . [z^n] S(z) = \sum_k \binom{r}{k} \binom{r}{n-2k}. [zn]S(z)=k(kr)(n2kr).

注意到:
( 1 + z ) r = ∑ k ( r k ) z k ( 1 + z 2 ) r = ∑ k ( r k ) z 2 k (1+z)^r = \sum_k \binom{r}{k} z^k \\ (1+z^2)^{r} = \sum_k \binom{r}{k} z^{2k} (1+z)r=k(kr)zk(1+z2)r=k(kr)z2k

将两者进行卷积:
( 1 + z ) r ( 1 + z 2 ) r = ∑ n ( ∑ k ( r k ) ( r n − 2 k ) ) z n ⇒ [ z n ] ( 1 + z + z 2 + z 3 ) r = ∑ k ( r k ) ( r n − 2 k ) ∴ S ( z ) = ( 1 + z + z 2 + z 3 ) r (1+z)^r (1+z^2)^r = \sum_n \left( \sum_k \binom{r}{k} \binom{r}{n-2k} \right) z^n \\ \Rightarrow [z^n] (1+z+z^2+z^3)^r = \sum_k \binom{r}{k} \binom{r}{n-2k} \\ \therefore S(z) = (1+z+z^2+z^3)^r (1+z)r(1+z2)r=n(k(kr)(n2kr))zn[zn](1+z+z2+z3)r=k(kr)(n2kr)S(z)=(1+z+z2+z3)r

7.6

证明,递归式:
在这里插入图片描述

可以用成套方法而不用生成函数求解.

可以设:
在这里插入图片描述

因此:
g n = A ( n ) α + B ( n ) β + C ( n ) γ g_n = A(n) \alpha + B(n) \beta + C(n) \gamma gn=A(n)α+B(n)β+C(n)γ
α = 1   ,   β = 2   ,   γ = 0 \alpha = 1 \ , \ \beta = 2 \ , \ \gamma = 0 α=1 , β=2 , γ=0 时:
在这里插入图片描述

α = 1   ,   β = − 1   ,   γ = 0 \alpha = 1 \ , \ \beta = -1 \ , \ \gamma = 0 α=1 , β=1 , γ=0 时:
在这里插入图片描述

α = 0   ,   β = − 1   ,   γ = 3 \alpha = 0 \ , \ \beta = -1 \ , \ \gamma = 3 α=0 , β=1 , γ=3 时:
在这里插入图片描述

综上:
在这里插入图片描述

7.7

求解递归式:
在这里插入图片描述

将递归式写成关于 g n g_n gn 的单个方程:
在这里插入图片描述

接着:
在这里插入图片描述

而我们知道交错取 F F F 的数列 ⟨ F 0 , F 2 , F 4 , ⋯   ⟩ \langle F_0 , F_2 , F_4 , \cdots \rangle F0,F2,F4, 就有:
∑ n F 2 n z n = z 1 − 3 z + z 2 \sum_n F_{2n} z^n = \dfrac{z}{1-3z+z^2} nF2nzn=13z+z2z
因此有:
g n = F 2 n + [ n = 0 ] g_n = F_{2n} + [n=0] gn=F2n+[n=0]

7.8

[ z n ] ( ln ⁡ ( 1 − z ) ) 2 / ( 1 − z ) m + 1 [z^n] (\ln{(1-z)})^2 / (1-z)^{m+1} [zn](ln(1z))2/(1z)m+1 等于什么?

首先证明一个对复杂的乘积求微分的方法:
在这里插入图片描述

用数学归纳法:

在这里插入图片描述

  1. 假设有:
    在这里插入图片描述

  2. 则有:
    在这里插入图片描述

即证原式成立

回到原题,我们对 1 ( 1 − z ) x + 1 = ∑ n ( x + n n ) z n \displaystyle \frac{1}{(1-z)^{x+1}} = \sum_n \binom{x+n}{n} z^n (1z)x+11=n(nx+n)zn 两边关于 x x x 求导:
d d x ( ( 1 − z ) − x − 1 ) = − ( 1 − z ) − x − 1 ln ⁡ ( 1 − z ) d d x ( ∑ n ( x + n n ) z n ) = ∑ n z n d d x ( ( x + n ) ⋯ ( x + 1 ) n ! ) = ∑ n z n ( x + n ) ⋯ ( x + 1 ) n ! ( 1 x + n + ⋯ + 1 x + 1 ) = ∑ n ( x + n n ) ( H x + n − H x ) z n \dfrac{d}{dx} ((1-z)^{-x-1}) = -(1-z)^{-x-1} \ln{(1-z)} \\ \dfrac{d}{dx} \left(\sum_n \binom{x+n}{n} z^n \right) = \sum_n z^n \dfrac{d}{dx} \left( \dfrac{(x+n) \cdots (x+1)}{n!} \right) \\ = \sum_n z^n \dfrac{(x+n) \cdots (x+1)}{n!} (\dfrac{1}{x+n} + \cdots + \dfrac{1}{x+1}) \\ = \sum_n \binom{x+n}{n} (H_{x+n} - H_x) z^n dxd((1z)x1)=(1z)x1ln(1z)dxd(n(nx+n)zn)=nzndxd(n!(x+n)(x+1))=nznn!(x+n)(x+1)(x+n1++x+11)=n(nx+n)(Hx+nHx)zn

这其实得到了书中的公式 7.43 7.43 7.43

让我们再一次对两边进行求导:
d d x ( − ( 1 − z ) − x − 1 ln ⁡ ( 1 − z ) ) = ln ⁡ 2 ( 1 − z ) ( 1 − z ) x + 1 d d x ( ∑ n ( x + n n ) ( H x + n − H x ) z n ) = ∑ n z n d d x ( ( x + n n ) ( 1 x + n + ⋯ + 1 x + 1 ) ) = ∑ n z n ( ( x + n n ) ( 1 x + n + ⋯ + 1 x + 1 ) 2 + ( x + n n ) ( − 1 ( x + n ) 2 + ⋯ + − 1 ( x + 1 ) 2 ) ) = ∑ n ( x + n n ) ( ( H x + n − H x ) 2 − H x + n ( 2 ) + H x ( 2 ) ) z n \dfrac{d}{dx} ( -(1-z)^{-x-1} \ln{(1-z)} ) = \dfrac{\ln^2{(1-z)}}{(1-z)^{x+1}} \\ \dfrac{d}{dx} \left( \sum_n \binom{x+n}{n} (H_{x+n} - H_x) z^n \right) \\ = \sum_n z^n \dfrac{d}{dx} \left( \binom{x+n}{n} (\dfrac{1}{x+n} + \cdots + \dfrac{1}{x+1} ) \right) \\ = \sum_n z^n \left( \binom{x+n}{n} (\dfrac{1}{x+n} + \cdots + \dfrac{1}{x+1})^2 + \\ \binom{x+n}{n} (\dfrac{-1}{(x+n)^2} + \cdots + \dfrac{-1}{(x+1)^2}) \right) \\ = \sum_n \binom{x+n}{n} ((H_{x+n} - H_x)^2 - H_{x+n}^{(2)} + H_x^{(2)} ) z^n dxd((1z)x1ln(1z))=(1z)x+1ln2(1z)dxd(n(nx+n)(Hx+nHx)zn)=nzndxd((nx+n)(x+n1++x

  • 6
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 《吉米多维奇数学分析题集pdf》是一本涵盖了数学分析各个方面的习题集合。这本书主要由吉米多维奇编写,旨在帮助读者巩固和提高数学分析的知识和技巧。 该书的内容非常全面,涵盖了数学分析的基本概念、定理以及重要的证明方法。书中的习题设计得非常有深度和针对性,既有基础习题,也有较复杂的综合应用题。这些习题旨在帮助读者对数学分析的理论知识进行巩固,并提供实际问题的解决思路。 与传统的数学教材相比,该书的一个突出特点就是习题的数量和质量。作者不仅提供了大量的习题,同时对每道习题都给出了详细的解答和解题思路。这为读者查漏补缺和查找解题方法提供了很大的便利。 此外,该书的排版和编辑也非常精细。清晰的板式和明确的章节结构使得读者能够快速找到自己需要的内容。此外,书中还附有索引和附录,方便读者查找和进一步学习相关的数学知识。 总的来说,《吉米多维奇数学分析题集pdf》是一本对数学分析感兴趣的读者而言非常有价值的参考书。读者可以通过做习题来加深对数学分析的理解,并提高自己的解题能力。无论是准备考试,还是提高学术研究水平,都可以从这本书中获得帮助。 ### 回答2: 《吉米多维奇数学分析题集pdf》是一本数学分析题集的电子版文件,以PDF格式呈现。吉米多维奇是一位著名的数学家,他的数学分析题集是针对该学科核心概念和问题的练习题集。 这本题集以电子版PDF的形式呈现,可以在电脑、平板或其他电子设备上阅读。通过这个PDF文件,学生可以随时随地练习和复习数学分析。 这个题集涵盖了数学分析的各个方面,包括函数的极限、连续性、微分和积分等。每个章节都有一些例题和习题,通过解答这些习题,学生可以巩固学过的知识,提升他们的数学分析能力。 该PDF文件的编排清晰,每个题目都有详细的解答和解题思路。这为学生提供了更好的学习指导和辅助。 总之,《吉米多维奇数学分析题集pdf》是一本对于学习数学分析的人来说很有价值的资源。它提供了丰富的练习题解答,能够帮助学生加深对数学分析的理解和掌握。无论是想加强数学分析能力,还是为考试做准备,这本题集都是一个很好的选择。 ### 回答3: 《吉米多维奇数学分析题集pdf》是一本由吉米多维奇编写的数学分析题集,包含了丰富的数学分析题目和解答。这本书的目的是帮助读者提高数学分析的解题能力和理解能力。 《吉米多维奇数学分析题集pdf》的题目覆盖了数学分析的各个内容,包括极限、导数、积分、级数等等。每个章节都有大量的习题,涵盖了不同难度和类型的题目,既有基本的计算题,也有思考题和证明题。这些题目的难度逐渐增加,可以满足不同层次的读者需求。 这本题集的解答部分是非常详细的,每个题目都有解题思路和具体的解答过程。这有助于读者更好地理解和掌握数学分析的概念和方法。同时,解答中也给出了一些解题技巧和注意事项,帮助读者提高解题效率和准确度。 读者可以通过《吉米多维奇数学分析题集pdf》进行自主学习和练习,巩固和拓展自己在数学分析领域的知识。同时,这本题集也可以作为学校教学的辅助教材,供老师和学生们一起使用。 总而言之,《吉米多维奇数学分析题集pdf》是一本有价值的数学分析题集,可以帮助读者提高数学分析的解题能力和理解能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值