matlab:使用龙格库塔法求解微分方程组

本文介绍了如何利用Matlab的龙格库塔方法求解微分方程组,通过实例展示了具体步骤和运行结果,为理解和应用该数值方法提供了指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%书籍:常用数值算法及其matlab实现
%第10章 常微分方程初值问题的数值解法,例10.14使用
%四阶龙格库塔方法
function [t,z] = rk4symeq(fun, t0, tf, Za, h)
%fun:微分方程的右表达式
%t0, tn为区间
%Za为初值,是列向量
M = floor(tf-t0)/h ;      %离散点的个数M+1
if t0 >= tf
    printf('左端点必须小于右端点');
    return;
end
N = length(Za);           %获得变量个数,N
z = zeros(M+1, N);
t = zeros(M +1, 1);
t =[t0 : h :tf]';
z(1,:) = Za';            %假设Za为列向量,与微分方程中的变量方向统一,变成行向量

for i = 1:M
    K1 =  feval(fun, t(i) , z(i,:));                    %K是行向量
    K2 =  feval(fun, t(i)+1/2*h ,z(i,:)+1/2* h*K1);
    K3 =  feval(fun, t(i)+1/2*h ,z(i,:)+1/2* h*K2);
    K4 =  feval(fun, t(i)+ h ,z(i,:)+ h*K3);   
    z(i+1,:) = z(i,:) +h/6 *(K1 + 2*K2 + 2*K3 + K4);
end

以下为求解的方程组
%书籍:常用数值算法及其matlab实现
%第10章 常微分方程初值问题的数值解法
%四阶龙格库塔,例10.16
function s = exa10_16(t,z)
%z是个向量,1*3
%输出s也是向量,1*3
s = zeros(1,2);
dy1 =  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值