01 背包问题

01背包问题

洛谷P1060 开心的金明

题目类型

  有N件物品和一个容量为V的背包。放入第件物品耗费的费用是C(即占用背包的空间容量为 C),得到的价值是W;。求解将哪些物品装入背包可使价值总和最大。

基本思路

  这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即 F [ i , v ] F{[i,v]} F[i,v]表示前件物品恰放入一个容量为 v v v的背包可以获得的最大价值。则其状态转移方程便是:
F [ i , v ] = m a x { F [ i − 1 , v ] , F [ i − 1 , v − c i ] + w i } {F{ \left[ {i,v} \right] }=max{ \left\{ {{\left. {F \left[ i-1,v \left] ,F \left[ i-1,v-c\mathop{{}}\nolimits_{{i}} \left] +w\mathop{{}}\nolimits_{{i}}\right. \right. \right. \right. } \right\} }}\right. }} F[i,v]=max{F[i1,v],F[i1,vci]+wi}  这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将 i i i前件物品放入容量为 v v v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只和前 i − 1 i-1 i1件物品相关的问题。如果不放第 i i i件物品,那么问题就转化为“前 i − 1 i-1 i1件物品放入容量为v的背包中”,价值为 f [ i − 1 , v ] f{[i-1,v]} f[i1,v];如果放第 i i i件物品,那么问题就转化为“前 i − 1 i-1 i1件物品放入剩下的容量为 v − C i v-C_i vCi;的背包中”,此时能获得的最大价值就是 f [ i − 1 , v − C i ] f{[i-1,v-C_i]} f[i1,vCi]再加上通过放入第 i i i件物品获得的竹值 W i W_i Wi
  伪代码如下:
F [ 0 , 0 … V ] ← 0 {F{\left[ {0,0\dots V}\right]}}\gets0 F[0,0V]0
f o r   i ← 1   t o   N for\space i\gets 1\space to\space N for i1 to N
f o r   i   ← C i   t o   V \qquad for\space i\space\gets C_i \space to\space V for i Ci to V
F [ i , v ] ← m a x { F [ i − 1 , v ] , F [ i − 1 , v − c i ] + w i } \qquad\qquad {F{\left[{i,v}\right]}\gets max{ \left\{ {{\left. {F \left[ i-1,v \left] ,F \left[ i-1,v-c\mathop{{}}\nolimits_{{i}} \left] +w\mathop{{}}\nolimits_{{i}}\right. \right. \right. \right. } \right\} }}\right. }} F[i,v]max{F[i1,v],F[i1,vci]+wi}

优化空间复杂度

  以上方法的时间和空间复杂度均为 O ( O V ) O\left( OV \right) O(OV),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到 O ( V ) O\left( V \right) O(V)
  先考虑上面讲的基本思路如何实现,肯定是有一个主循环 i ← 1 … N i\gets1\dots N i1N, 每次算出来二维数组 F [ i , 0 … V ] {F{\left[ {i,0\dots V}\right]}} F[i,0V]的所有值。那么,如果只用一个数组 F [ 0 , 0 … V ] {F{\left[ {0,0\dots V}\right]}} F[0,0V],能不能保证第i次循环结束后F[u]中表示的就是我们定义的状态 F [ i , v ] {F{\left[ {i,v}\right]}} F[i,v]呢? F [ i , v ] {F{\left[ {i,v}\right]}} F[i,v]是由 F [ i − 1 , v ] {F{\left[ {i-1,v}\right]}} F[i1,v] F [ i − 1 , v − c i ] F\left[ i-1,v-c\mathop{{}}\nolimits_{{i}} \right] F[i1,vci]两个子问题递推而来,能否保证在推 F [ i , v ] F[i,v] F[i,v]时(也即在第次主循环中推F[u时)能够取用 F [ i − 1 , v ] F\left[ i-1,v \right] F[i1,v] F [ i − 1 , v − c i ] F\left[ i-1,v-c\mathop{{}}\nolimits_{{i}} \right] F[i1,vci]的值呢?
  事实上,这要求在每次主循环中我们以 v ← V … 0 v\gets V\dots 0 vV0的递减顺序计算 F [ v ] F[v] F[v]
这样才能保证计算 F [ v ] F[v] F[v] F [ v − C i ] F[v-C_i] F[vCi]保存的是状态 F [ i − 1 , v − c i ] F\left[ i-1,v-c\mathop{{}}\nolimits_{{i}} \right] F[i1,vci]的值。
伪代码如
下:
F [ 0 , 0 … V ] ← 0 {F{\left[ {0,0\dots V}\right]}}\gets0 F[0,0V]0
f o r   i ← 1   t o   N for\space i\gets 1\space to \space N for i1 to N
f o r   v   ← V   t o   C i \qquad for\space v\space\gets V\space to\space C_i for v V to Ci
F [ v ] ← m a x { F [ v ] , F [ v − C i ] + w i } \qquad\qquad F{\left[{v}\right]}\gets max\left\{ F{\left[{v}\right]},F{\left[{v-C_i}\right]+w_i}\right\} F[v]max{F[v],F[vCi]+wi}
  其中的 F [ v ] ← m a x { F [ v ] , F [ v − C i ] + w i } F[v]\gets max\{{F[v],F[v-C_i]+w_i}\} F[v]max{F[v],F[vCi]+wi}一句,恰就对应于我们原来的转移方程,因为现在的 F [ v − C i ] F[v-C_i] F[vCi]就相当于原来的 F [ i − 1 , v − c i ] F\left[ i-1,v-c\mathop{{}}\nolimits_{{i}} \right] F[i1,vci]。如果将 v v v的循环顺序从上面的逆序改成顺序的话,那么则成了 F [ i , v ] F[i,v] F[i,v] F [ i , v − c i ] F\left[ i,v-c\mathop{{}}\nolimits_{{i}} \right] F[i,vci]推导得到,与本题意不符。
  事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
伪代码为:
F [ 0 … V ] ← 0 F[0\dots V]\gets0 F[0V]0
f o r   i ← 1   t o   N for\space i\gets 1\space to \space N for i1 to N
f o r   v   ← V   t o   C i \qquad for\space v\space\gets V\space to\space C_i for v V to Ci
F [ v ] ← m a x { F [ v ] , F [ v − C i ] + w i } \qquad\qquad F{\left[{v}\right]}\gets max\left\{ F{\left[{v}\right]},F{\left[{v-C_i}\right]+w_i}\right\} F[v]max{F[v],F[vCi]+wi}

//洛谷P1060
#include<bits/stdc++.h>
using namespace std;
int main(){
	int dp[30000],n,m;
	int v[25],w[25],i,j;
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;i++){
		scanf("%d%d",&v[i],&w[i]);
		for(j=n;j>=v[i];j--){
			dp[j]=max(dp[j],dp[j-v[i]]+v[i]*w[i]);
		}
	}
	cout<<dp[n];	
	return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值