疫情模拟中的SIR模型与扩展的SIRD模型

本文介绍了SIR模型在流行病学中的应用,用于模拟传染病动力学。SIR模型包括易感者、感染者和痊愈者。接着探讨了SIRD模型的扩展,引入死亡人群,并分析了SIR模型在新冠病毒模拟中的局限性,如潜伏期、误诊等问题。文章还详细阐述了细分易感人群和感染者的不同状态,以更精确地反映实际情况。

一.SIR模型

 

SIR模型起源于流行病学的研究,是模拟传染病动力学的经典模型。至今仍在流行病学中占据中心位置,核心在于微分方程。

SIR模型描述了流行病下三大人群:易感者 susceptible、感染者 infectious、痊愈者 recovered之间的关系。

SIR模型表述了三大人群之间的相互转化关系,并用状态转化函数来表示。

将t时刻三大人群的人数分别用以时间为自变量的函数S(t),I(t),R(t)来表示。描述这一模型需要给定少量重要的初始条件如模型涉及的总人数等。这些参数将作为常量参与到模型的构建中。

我们假设参与模拟的总人数为N,传染率为β。

完成易感者-感染者-痊愈者的转化需经过两个过程:即

1)感染人群因为同已经感染的人群I直接或间接接触,有一定可能性被感染。我们假设的传染率β表示易感人群在接触到感染人群时被感染的概率。

假设单位时间内被感染的易感人群与易感人群总数成正比,则这一过程可描述为:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值