Simple Data Structures【2019银川网络赛A题】【线段树】

题目链接


  对数值的每一位去建立一颗线段树,一个值"≤1e6"的线段树差不多建立21棵线段树就可以了。

  题意:有N个数,以及M次操作,

分别是查询区间和;区间每个数"^x"、区间每个数"|x"、区间每个数"&x"。

  那么,看成每一个二进制位上面,对应的操作会变成区间翻转、如果该位为1区间强制赋值为1、如果该位为0区间强制赋值为0。

  这时候可以处理两个lazy,分别是lazy_turn表示是否需要翻转,还有就是lazy_up表示是否需要区间置数,然后,如果有lazy_up那么lazy_turn在这里就是无效的了。所以我们在pushdown的时候,需要判断一下是否存在lazy_up,以及在赋值的时候,需要判断一下lazy_up的存在性。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e5 + 7;
int N, M;
int tree[22][maxN<<2] = {0}, lazy_turn[22][maxN<<2], lazy_up[22][maxN<<2] = {0};
inline void pushup(int bit, int rt) { tree[bit][rt] = tree[bit][lsn] + tree[bit][rsn]; }
void Insert(int bit, int rt, int l, int r, int qx, int val)
{
    if(l == r)
    {
        tree[bit][rt] = val;
        return;
    }
    int mid = HalF;
    if(qx <= mid) Insert(bit, Lson, qx, val);
    else Insert(bit, Rson, qx, val);
    pushup(bit, rt);
}
inline void pushdown(int bit, int rt, int l, int r)
{
    int mid = HalF;
    if(lazy_turn[bit][rt])
    {
        tree[bit][lsn] = (mid - l + 1) - tree[bit][lsn];
        tree[bit][rsn] = (r - mid) - tree[bit][rsn];
        lazy_turn[bit][lsn] ^= 1;
        lazy_turn[bit][rsn] ^= 1;
        lazy_up[bit][lsn] *= -1;
        lazy_up[bit][rsn] *= -1;
        if(lazy_up[bit][lsn]) lazy_turn[bit][lsn] = 0;
        if(lazy_up[bit][rsn]) lazy_turn[bit][rsn] = 0;
        lazy_turn[bit][rt] = 0;
    }
    if(lazy_up[bit][rt])
    {
        if(lazy_up[bit][rt] == -1)
        {
            tree[bit][lsn] = 0;
            tree[bit][rsn] = 0;
            lazy_turn[bit][lsn] = lazy_turn[bit][rsn] = 0;
            lazy_up[bit][lsn] = lazy_up[bit][rsn] = -1;
        }
        else
        {
            tree[bit][lsn] = mid - l + 1;
            tree[bit][rsn] = r - mid;
            lazy_turn[bit][lsn] = lazy_turn[bit][rsn] = 0;
            lazy_up[bit][lsn] = lazy_up[bit][rsn] = 1;
        }
        lazy_up[bit][rt] = 0;
    }
}
void update(int bit, int rt, int l, int r, int ql, int qr, int val, int op)
{
    if(ql <= l && qr >= r)
    {
        if(op == 2) //翻转
        {
            tree[bit][rt] = r - l + 1 - tree[bit][rt];
            lazy_turn[bit][rt] ^= 1;
            lazy_up[bit][rt] *= -1;
            if(lazy_up[bit][rt]) lazy_turn[bit][rt] = 0;
        }
        else if(op == 3)    //强制制1
        {
            tree[bit][rt] = r - l + 1;
            lazy_turn[bit][rt] = 0;
            lazy_up[bit][rt] = 1;
        }
        else    //强制制0
        {
            tree[bit][rt] = 0;
            lazy_turn[bit][rt] = 0;
            lazy_up[bit][rt] = -1;
        }
        return;
    }
    int mid = HalF;
    //pushdown
    pushdown(bit, myself);
    if(qr <= mid) update(bit, QL, val, op);
    else if(ql > mid) update(bit, QR, val, op);
    else { update(bit, QL, val, op); update(bit, QR, val, op); }
    pushup(bit, rt);
}
int query(int bit, int rt, int l, int r, int ql, int qr)
{
    if(ql <= l && qr >= r) return tree[bit][rt];
    //pushdown
    pushdown(bit, myself);
    int mid = HalF;
    if(qr <= mid) return query(bit, QL);
    else if(ql > mid) return query(bit, QR);
    else return query(bit, QL) + query(bit, QR);
}
int main()
{
    scanf("%d", &N);
    for(int i=1, val; i<=N; i++)
    {
        scanf("%d", &val);
        for(int j=0; j<=21; j++)
        {
            if((val >> j) & 1)
            {
                Insert(j, 1, 1, N, i, 1);
            }
        }
    }
    scanf("%d", &M);
    int op, l, r, x;
    ll ans;
    while(M--)
    {
        scanf("%d%d%d", &op, &l, &r);
        if(op == 1)
        {
            ans = 0;
            for(int i=0; i<=21; i++)
            {
                ans += (ll)query(i, 1, 1, N, l, r) << (ll)i;
            }
            printf("%lld\n", ans);
        }
        else
        {
            scanf("%d", &x);
            if(op == 2)
            {
                for(int i=0; i<=21; i++)
                {
                    if((x >> i) & 1)
                    {
                        update(i, 1, 1, N, l, r, 1, 2);
                    }
                }
            }
            else if(op == 3)
            {
                for(int i=0; i<=21; i++)
                {
                    if((x >> i) & 1)
                    {
                        update(i, 1, 1, N, l, r, 1, 3);
                    }
                }
            }
            else
            {
                for(int i=0; i<=21; i++)
                {
                    if(((x >> i) & 1) == 0)
                    {
                        update(i, 1, 1, N, l, r, 1, 4);
                    }
                }
            }
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值