该数据集是为机电设备故障诊断和预测维护而收集的大型真实世界时间序列数据集,包含数千个设备的数据,为工业制造者提供了一个测试和评估故障诊断和维护算法的标准数据集。
1、数据概述
力学分析指标
1996年12月2日128指数
1996年12月2日dir泵-数据集
1996年12月2日dir旧版本
2、旧版本的索引
1996年12月2日203指数
1990年6月25日460243机械分析数据
1990年6月25日机械分析。名称
1990年6月25日27877机械分析。未使用实例
3、数据详细描述
来源:
(a)数据库的原始所有者:
F. Bergadano, A. Giordana, L. Saitta, M. Botta
都灵大学,意大利
Corso Svizzera 185,都灵-电话(39)11 7712002
电子邮件:bergadan@itoinfo.bitnet
F. Bracadori, D. De Marchi
Sogesta, Localita’ Crocicchio,乌尔比诺,意大利
(b)数据库捐助者:埃尼切姆(埃尼)、拉文纳至索格斯塔(埃尼)、乌尔比诺。
©收到日期:1990年6月
3.
过去的用法:
(a) F. Bergadano, a . Giordana, L. Saitta, F. Brancadori, D. De Marchi:
“真实领域的集成学习”
程序7 ML会议,奥斯汀得克萨斯州,1990
(b)预测属性的指示:类。
©研究结果说明:在论文中描述了研究结果。
4.
相关资料
我们不能每行放一个实例,因为
每个实例都包含许多组件
组件有8个属性,且数量为
不同的组件。
每个实例
然后在一个单独的文件中给出。
5.
实例数:209
6.
每个示例组件的属性数:8
7.
属性:
0 - dummy(总是1)-用于编号-忽略
1 - class -分类(1…
6、同样适用于组件的一个例子)
2 - # -部件编号(整数)
3 -支撑-在采取措施的机器上的支撑(1…4)
4 - CPM -测量频率(整数)
5 -测量误差(实际)
6 - misr -早期测量(实际)
7 -过滤器,测量的类型和方向:
{vo=<无过滤器,速度,水平>,
Va =<无过滤器,速度,轴向>,
Vv =<无过滤器,速度,垂直>,
Ao =<无滤波器,振幅,水平>,
Aa =<无滤波器,振幅,轴向>,
Av =<无滤波器,振幅,垂直>,
Io =<过滤器,速度,水平>,
Ia =<过滤器,速度,轴向>,
Iv =<过滤器,速度,垂直>}
8 - omega -机器的RPM(整数,
对于一个示例的组件也是一样的)
缺失属性值:无(当度量为
缺少,则不包含相应的组件
,但对于包含的组件,
给出了所有属性)
9.
班级分布:69 69 14 13 16 28
然而,这种分类有时是错误的
要求每个例子只能给出一个类。
如果一个学习系统可以处理多种分类,
“class”属性应该根据
文件“trueclass”中给出的信息。
文件THEORY包含了一个Horn特征理论
中报告的结果由ml-smart使用
“learn08。
Ambi(歧义),学08。
错误(错误率),学习
(混淆矩阵)”作为学习集。
类似的文件“test08。
表示两边,test08。
Err和test08。
垫”报告
测试集的结果。
“predicates.fr, semantics.fr”文件包含了操作
谓词的定义,它们是如何从
包含所有学习集的原始关系obj。
为了使数据集可用,从一个系统FOIL似的
谓词以扩展形式提出。
目录LEARN中包含的文件对应于这样的文件
学习集的扩展,而TEST中的扩展
对于测试集是一样的。
请注意,ML-SMART可以学习数值常数。
这里,扩展是使用默认值生成的
由老师建议!!!
关系中元组的格式如下:
(a) F样本的标识符(见文件obj)。
(b)μ
断言的真实程度。
取值范围为0.5
到1.0。
这里的值可能只是布尔值(1.0)。
© X1, X2,…
项(组件)的数字标识符
例F,谓词中的变量被绑定到它。
4、参考资料
获取和下载数据集的方式
获取和下载数据集的方式:https://jcn362s9p4t8.feishu.cn/wiki/A0NXwPxY3ie1cGkOy08cru6vnvc