OpenCV基础API函数实战一

检测最大星云图的边缘和面积

请添加图片描述

分析图片

此图片有很多噪声,包括文字小片星云都对我们处理此图片造成了一定的影响
首先我们先去噪声,有前面所需的API函数可知道先腐蚀膨胀可以去除小块噪声并且图像大小不改变

基于上面图像处理,理论上我们已经把文字以及小片的星云噪声给去掉了,接下来就是轮廓提取了,轮廓提取有很多种方法像Canny,findContours,拉普拉斯锐化都可以很好地体现轮廓和提取轮廓,但是这里我们采用形态学的内梯度进行轮廓提取

现在理论上我们已经把图片的轮廓提取出来了,然后我们在利用’findContours’API对轮廓的点进行提取,在提取时候还会提取到很多杂乱的信息,这里我们就需要对轮廓进行过滤了,我们采用面积的方式进行过滤利用contourAreaAPI函数得到面积,除去图片本身的轮廓,我们需要最大的轮廓.

现在目标也已经发现了,我们可以利用polylinesAPI函数绘画出我们的轮廓

至此分析完毕

结果图

在这里插入图片描述

代码

void Demo::exampleOne(Mat &src)
{
    Mat gray, dst, binary, erode_image, inside_contour;
    if (src.channels() >= 2)
    {
        cvtColor(src, gray, COLOR_BGR2GRAY);
    } else
    {
        gray = src.clone();
    }
    //高斯模糊
    GaussianBlur(gray, gray, Size(9, 9), 0);

    //结构元素
    Mat remove_noise_kernerl = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    //腐蚀
    erode(gray, erode_image, remove_noise_kernerl, Point(-1, -1), 10);
    //膨胀
    dilate(erode_image, gray, remove_noise_kernerl, Point(-1, -1), 10);
    namedWindow("腐蚀和膨胀", WINDOW_FREERATIO);
    imshow("腐蚀和膨胀", gray);


    Mat kernerl = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    //腐蚀
    erode(gray, erode_image, kernerl, Point(-1, -1), 3);
    //图片相减 提取轮廓
    subtract(gray, erode_image, inside_contour);
    namedWindow("内轮廓", WINDOW_FREERATIO);
    imshow("内轮廓", inside_contour);
    threshold(inside_contour, inside_contour, 0, 255, THRESH_BINARY | cv::THRESH_OTSU);
    namedWindow("二值", WINDOW_FREERATIO);
    imshow("二值", inside_contour);

    //发现轮廓
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    findContours(inside_contour, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point());
    dst = Mat::zeros(src.size(), CV_8UC3);
    dst = Scalar(0, 0, 0);
    for (int i = 1; i < contours.size(); ++i)
    {
        double area = contourArea(contours[i]);
        //轮廓筛选
        if (area > 1690)
        {
            //绘制轮廓
            cout << area << endl;
            polylines(dst, contours[i], true, Scalar(0, 0, 255), 2);
            polylines(src, contours[i], true, Scalar(0, 0, 255), 2);

            //形状逼近
            Mat pts;
            approxPolyDP(contours[i], pts, 4, true);
            for (int j = 0; j < pts.rows; ++j)
            {
                Vec2i pt=pts.at<Vec2i>(j,0);
                circle(dst,Point (pt[0],pt[1]), 2, Scalar(255, 0, 0), 2);
                circle(src,Point (pt[0],pt[1]), 2, Scalar(255, 0, 0), 2);
            }
        }
    }
    namedWindow("结果", WINDOW_FREERATIO);
    namedWindow("结果1", WINDOW_FREERATIO);
    imshow("结果", dst);
    imshow("结果1", src);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~搬~运~工~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值