【线性代数及其应用】02 -矩阵代数

矩阵代数

1. 矩阵与向量

1.1 矩阵乘以向量的求法

  矩阵与向量的乘法包含两种,分别是矩阵与行向量的乘法,以及矩阵与列向量的乘法

  • 矩阵与列向量的乘法
    A ∗ { c 1 c 2 c 3 } A*\left\{ \begin{matrix} c1\\ c2\\ c3 \end{matrix}\right\} Ac1c2c3

  把A竖着看,当初列向量的组合
A = { v 1 v 2 v 3 } A = \left\{ \begin{matrix} v1& v2& v3 \end{matrix}\right\} A={v1v2v3}
  则可以得到
{ v 1 v 2 v 3 } ∗ { c 1 c 2 c 3 } = c 1 ∗ v 1 + c 2 ∗ v 2 + c 3 ∗ v 3 \left\{ \begin{matrix} v1& v2& v3 \end{matrix}\right\}*\left\{ \begin{matrix} c1\\ c2\\ c3 \end{matrix}\right\} = c1*v1+c2*v2+c3*v3 {v1v2v3}c1c2c3=c1v1+c2v2+c3v3

  • 矩阵与行向量的乘法

  矩阵行向量要写在矩阵左侧
{ c 1 c 2 c 3 } ∗ A \left\{ \begin{matrix} c1& c2& c3 \end{matrix}\right\}*A {c1c2c3}A
  把A横着看,当初行向量的组合
A = { v 1 T v 2 T v 3 T } A = \left\{ \begin{matrix} v1^T \\ v2^T \\ v3^T \end{matrix}\right\} A=v1Tv2Tv3T
  则可以得到
{ c 1 c 2 c 3 } ∗ { v 1 T v 2 t T v 3 T } = c 1 ∗ v 1 T + c 2 ∗ v 2 T + c 3 ∗ v 3 T \left\{ \begin{matrix} c1& c2& c3 \end{matrix}\right\}*\left\{ \begin{matrix} v1^T \\ v2t^T \\ v3^T \end{matrix}\right\} = c1*v1^T+c2*v2^T+c3*v3^T {c1c2c3}v1Tv2tTv3T=c1v1T+c2v2T+c3v3T

1.2 矩阵乘以列向量的意义

  矩阵乘以列向量实际上就是把矩阵A看着是列向量的组合,通过列向量作为权值,让矩阵的列向量重新线性组合得到一个新的列向量

1.3 行向量乘以矩阵的意义

  行向量乘以矩阵,实际上就是把矩阵A看着是行向量的组合,通过行向量作为权值,让矩阵的行向量重新线性组合,得到一个新的行向量

2. 矩阵乘法的求法(也就是含义)

  矩阵乘法A*B有5种理解方法,可以根据需要进行

2.1 前行乘后列

  前行乘后列是矩阵乘法的标准做法,如
A ∗ B = { a 11 a 12 a 21 a 22 } ∗ { b 11 b 12 b 21 b 22 } = { a 11 ∗ b 11 + a 12 ∗ b 21 a 11 ∗ b 12 + a 12 ∗ b 22 a 21 ∗ b 11 + a 22 ∗ b 21 a 21 ∗ b 12 + a 22 ∗ b 22 } A*B=\left\{ \begin{matrix} a11 &a12\\ a21& a22 \end{matrix}\right\}*\left\{ \begin{matrix} b11 &b12\\ b21& b22 \end{matrix}\right\}=\left\{ \begin{matrix} a11*b11+a12*b21 &a11*b12+a12*b22\\ a21*b11+a22*b21&a21*b12+a22*b22 \end{matrix}\right\} AB={a11a21a12a22}{b11b21b12b22}={a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22}
  也就是新矩阵xij的位置,是前面矩阵的第i行,和后面矩阵第j列点乘的结果

2.2 行乘行

  当然,矩阵乘法也可以理解为是很多行的乘法,前矩阵A可以看做是很多个行向量,然后就有了行向量*矩阵B的解释法。每一个前矩阵B中的行向量都对矩阵A中的行向量进行了一次重新组合,得到了一个新行向量
A ∗ B = { v 1 T v 2 T } ∗ { b 11 b 12 b 21 b 22 } = { W 1 T W 2 T } A*B= \left\{ \begin{matrix} v1^T\\ v2^T \end{matrix}\right\}*\left\{ \begin{matrix} b11 &b12\\ b21& b22 \end{matrix}\right\} = \left\{ \begin{matrix} W1^T\\ W2^T \end{matrix}\right\} AB={v1Tv2T}{b11b21b12b22}={W1TW2T}

v 1 T = { a 11 a 12 } v1^T = \left\{ \begin{matrix} a11& a12 \end{matrix}\right\} v1T={a11a12}

v 2 T = { a 21 a 22 } v2^T= \left\{ \begin{matrix} a21& a22 \end{matrix}\right\} v2T={a21a22}

  可得
W 1 T = a 11 ∗ { b 11 b 12 } + a 12 ∗ { b 21 b 22 } W1^T = a11*\left\{ \begin{matrix} b11& b12 \end{matrix}\right\} +a12*\left\{ \begin{matrix} b21& b22 \end{matrix}\right\} W1T=a11{b11b12}+a12{b21b22}

W 2 T = a 21 ∗ { b 11 b 12 } + a 22 ∗ { b 21 b 22 } W2^T = a21*\left\{ \begin{matrix} b11& b12 \end{matrix}\right\} +a22*\left\{ \begin{matrix} b21& b22 \end{matrix}\right\} W2T=a21{b11b12}+a22{b21b22}

2.3 列乘列

  后矩阵B也可以看做很多列向量的组合,于是就变成的矩阵乘以列向量
A ∗ B = { a 11 a 12 a 21 a 22 } ∗ { V 1 V 2 } = { W 1 W 2 } A*B= \left\{ \begin{matrix} a11 &a12\\ a21& a22 \end{matrix}\right\}*\left\{ \begin{matrix} V1&V2 \end{matrix}\right\} = \left\{ \begin{matrix} W1& W2 \end{matrix}\right\} AB={a11a21a12a22}{V1V2}={W1W2}

v 1 = { b 11 b 12 } v1 = \left\{ \begin{matrix} b11\\ b12 \end{matrix}\right\} v1={b11b12}

v 2 = { b 21 b 22 } v2= \left\{ \begin{matrix} b21\\b22\end{matrix}\right\} v2={b21b22}

  可得

W 1 = b 11 ∗ { a 11 a 21 } + b 12 ∗ { a 12 a 22 } W1 = b11*\left\{ \begin{matrix} a11\\ a21 \end{matrix}\right\} +b12*\left\{ \begin{matrix} a12\\ a22 \end{matrix}\right\} W1=b11{a11a21}+b12{a12a22}

W 2 = b 21 ∗ { a 11 a 21 } + b 22 ∗ { a 12 a 22 } W2 = b21*\left\{ \begin{matrix} a11\\ a21 \end{matrix}\right\} +b22*\left\{ \begin{matrix} a12\\ a22 \end{matrix}\right\} W2=b21{a11a21}+b22{a12a22}

2.4 前列乘后行

  前列乘后行可以得到一个个秩1矩阵,矩阵乘法可以看做是子矩阵的叠加
A ∗ B = c o l u m n a 1 ∗ r o w b 1 + c o l u m n a 2 ∗ r o w b 1 + c o l u m n a 1 ∗ r o w b 2 + c o l u m n a 2 ∗ r o w b 2 A*B = column_{a1}*row_{b1}+column_{a2}*row_{b1}+column_{a1}*row_{b2}+column_{a2}*row_{b2} AB=columna1rowb1+columna2rowb1+columna1rowb2+columna2rowb2

2.5 分块乘法

  矩阵乘法也可以看做分块矩阵的乘法
A ∗ B = { A 1 A 2 A 3 A 4 } ∗ { B 1 B 2 B 3 B 4 } = { W 1 W 2 W 3 W 4 } A*B= \left\{ \begin{matrix} A1 &A2\\ A3& A4 \end{matrix}\right\}*\left\{ \begin{matrix} B1&B2\\B3&B4 \end{matrix}\right\} = \left\{ \begin{matrix} W1& W2\\W3&W4 \end{matrix}\right\} AB={A1A3A2A4}{B1B3B2B4}={W1W3W2W4}

3.矩阵的分解

3.1 LU分解

3.1.1 含义

  矩阵的LU分解是最简单的一种,将矩阵A分解为下三角矩阵与上三角矩阵的成绩。其中L为下三角矩阵,对角线全部为1,U为上三角矩阵,其实也就是矩阵的阶梯式。LU分解代表了矩阵化为阶梯式的过程中发生的变化,L就是每一步变化的矩阵乘积。

3.1.2 求解步骤

  假设E21的意思为把矩阵A的第2行第1个元素消去变成0,假设A是个3x3的矩阵,那么,行变换为阶梯式的过程就应该是 E21,E31,E32,最后得到了U
E 32 ∗ E 31 ∗ E 21 ∗ A = U E32*E31*E21* A = U E32E31E21A=U

A = ( E 32 ∗ E 31 ∗ E 21 ) − 1 ∗ U A = ( E32*E31*E21)^{-1}*U A=(E32E31E21)1U

A = L ∗ U A = L*U A=LU

即 L = ( E 32 ∗ E 31 ∗ E 21 ) − 1 即 L = ( E32*E31*E21)^{-1} L=(E32E31E21)1

  这种求解步骤是矩阵没有发生行交换的情况,如果发生了行交换,矩阵的LU分解应该为

A = P ∗ L ∗ U A= P*L*U A=PLU

P 为 置 换 矩 阵 P为置换矩阵 P

3.1.2 LU分解的应用–加速线性方程组的求解

  因为从原始矩阵变换为最简阶梯形经过了很多次行变换,行变换可以用一个矩阵来描述,最终得到的最简阶梯形是一个下三角矩阵,记为U,而多次行变换的乘积是一个上三角矩阵,记为L,即A=LU,原式可以表示为
L ∗ U ∗ X = b L*U*X=b LUX=b
  令y=UX
L ∗ y = b L*y = b Ly=b
  因为L是下三角矩阵,解方程必然很快,得到y以后,再算U
x=y,U是上三角矩阵,计算也很快,用这种先拆分再解方程的LU分解法比最简阶梯形计算量更小一些

3.2 QR分解

3.2.1 含义

  QR分解是在施密特正交化,产生正交矩阵Q的过程中产生的,A=QR实际上就是A中的列向量作为向量空间的基,通过施密特正交化得到了标准正交基Q,R记录了这个变化的过程,R是一个上三角矩阵。

  因为A中的基xi,都是由Q中的前i个单位正交基组合得到的,所以R必定是个上三角矩阵,比如

r 1 = x 1 ; r1 = x1; r1=x1;

r 2 = x 2 − r 1 T ∗ x 2 r 1 T ∗ r 1 ∗ r 1 r2 = x2 - \frac{r_1^T*x2}{r_1^T*r_1}*r_1 r2=x2r1Tr1r1Tx2r1

即 x 2 = c 1 ∗ r 1 + c 2 ∗ r 2 即 x2 = c1*r1+c2*r2 x2=c1r1+c2r2
  其余的可以类推,所以矩阵R一定是个上三角矩阵

3.2.2 分解条件

  因为只有A的各个向量能够构成向量空间的一组基向量才能进行施密特正交化,所以,能够做QR分解的条件是,A的列向量必须是线性无关的

3.2.3 分解方法

  首先,Q是施密特正交化得到的标准正交基,这里就不写求解过程了,只写R的求法
A = Q ∗ R A = Q*R A=QR

R = Q − 1 ∗ A R = Q^{-1}*A R=Q1A

因 为 Q 是 标 准 正 交 矩 阵 , 所 以 有 逆 等 于 转 置 , 可 得 因为Q是标准正交矩阵,所以有逆等于转置,可得 Q

R = Q T ∗ A R = Q^T*A R=QTA

3.2.4 QR分解的用途
3.2.4.1 拆分标准正交基
3.2.4.2 提高最小二乘解的精度

A X = b AX = b AX=b

A T ∗ A ∗ X = A T ∗ b A^T*A*X = A^T*b ATAX=ATb

X = ( A T ∗ A ) − 1 ∗ A T ∗ b X=(A^T*A)^{-1}*A^T*b X=(ATA)1ATb

X = ( R T ∗ Q T ∗ Q ∗ R ) − 1 ∗ R T ∗ Q T ∗ b X=(R^T*Q^T*Q*R)^{-1}*R^T*Q^T*b X=(RTQTQR)1RTQTb

X = R − 1 ∗ Q T ∗ b X = R^{-1}*Q^T*b X=R1QTb

可 得 R X = Q T ∗ b 可得 RX = Q^T*b RX=QTb
  因为R是一个上三角矩阵,乘以X可以得到一个方便求解的线性方程,而右边没有了求逆矩阵的过程,求逆矩阵的过程中,如果有小数发生约简,会引入误差,而不计算矩阵的逆,既能够提高运算速度,也能够提高运算精度。

3.3 对角分解

3.3.1 含义

  对角分解是基于特征值和特征向量的矩阵分解
  我们知道,特征值具有这样的性质
A ∗ v 1 = λ 1 ∗ v 1 A*v_1 = λ_1*v1 Av1=λ1v1
  v1是矩阵A的特征向量,λ1是矩阵A的特征值。如果有矩阵S是矩阵A的特征向量的合集
A ∗ S = A ∗ { v 1 . . . v n } = { λ 1 ∗ v 1 . . . λ n ∗ v n } = S ∗ λ A*S = A*\left\{\begin{matrix}v1& ...&vn \end{matrix}\right\} =\left\{\begin{matrix}λ1*v1& ...&λn*vn \end{matrix}\right\}=S*λ AS=A{v1...vn}={λ1v1...λnvn}=Sλ

其 中 λ = { λ 1 . . . 0 . . . λ r . . . 0 . . . λ n } 其中λ = \left\{\begin{matrix}λ1& ...&0\\...&λr&...\\0&...&λn \end{matrix}\right\} λ=λ1...0...λr...0...λn

  可得
A = S − 1 ∗ λ ∗ S A = S^{-1}*λ*S A=S1λS

3.3.2 分解条件

  可以看出来,只有A有n个线性无关的特征向量的时候,才能对角化,如果有n个不同的特征值,必定有n个线性无关的特征向量,但是没有n个不同的特征值,不一定不能进行对角化分解

3.3.3 分解方法

  分解方法就是,只要能够求得特征值和特征向量即可构造矩阵S和λ
  先求特征值
A ∗ v = λ ∗ v A*v=λ*v Av=λv

( A − λ ∗ I ) ∗ v = 0 (A-λ*I)*v=0 AλIv=0

求 d e t ∣ A − λ ∗ I ∣ = 0 即 可 解 得 特 征 值 求det|A-λ*I|=0即可解得特征值 detAλI=0
  再求特征向量

求 得 的 特 征 值 代 入 ( A − λ ∗ I ) ∗ v = 0 求得的特征值代入(A-λ*I)*v=0 AλIv=0
  求解其零空间即可获得特征向量。如果λ是重根,就看看重根能否在零空间内得到足够的特征向量,否则不能对角化

  有了特征值和特征向量即可实现对角化

3.3.4 对角分解的应用

  对焦化应用在特征值部分详述,这里概况说明一下

  • 求A的幂次
  • 求差分方程
  • 求马尔科夫矩阵
  • 求系统稳态问题
  • 微分方程的解耦与求解
  • 相似矩阵

3.4 谱分解

3.4.1 含义

  谱分解又叫做对称矩阵的对角化,也就是说,必须是能进行对角化的对称矩阵,才能进行谱分解。
根 据 对 角 化 A = S ∗ λ ∗ S − 1 根据对角化 A = S*λ*S^{-1} A=SλS1
  因为A是对称矩阵,有A=A^T

A T = ( S − 1 ) T ∗ λ T ∗ S T = S ∗ λ ∗ S − 1 A^T = (S^{-1})^T*λ^T*S^T=S*λ*S^{-1} AT=(S1)TλTST=SλS1
  所以有S-1=ST
  可知S必定是一个标准正交阵,原对角分解可化为
A = Q ∗ ∑ ∗ Q T A = Q*∑*Q^T A=QQT

3.4.2 分解条件

  谱分解的条件是矩阵A必须是能进行对角化的对称矩阵

3.4.3 分解方法

  分解方法与对角化是一样的,都是先求特征值,再求特征向量,最后求得矩阵Q和∑。因为Q是标准正交阵,最后不需要求逆,只要转置就好,计算量更加的小

3.4.4 谱分解的其他意义

  如果把谱分解式子乘开,可得
A = λ 1 ∗ v 1 ∗ v 1 T + . . . . + λ n ∗ v n ∗ v n T A = λ1*v1*v1^T+....+λn*vn*vn^T A=λ1v1v1T+....+λnvnvnT
  因为vi都是标准正交基,所以A可以看做是vi的投影矩阵的线性组合

3.4.4 谱分解的应用

  谱分解的主要应用在坐标变换上,能够把二次型曲线通过谱分解变换到标准位置,比如椭圆,可以把长轴和短轴变换到坐标轴上来,能够使得计算更加方便。在二次型中,得到的特征向量方向就是二次型的极值存在的方向,比如椭圆的长轴和短轴方向。而特征值标准二次型的极值,比如椭圆的长轴和短轴大小。

  下面介绍如何通过谱分解,把二次型变换到标准位置。假设二次型为X^T*A*X

  首先通过变量代换,令Y = p*X,p是标准正交基矩阵,也就是A的特征向量矩阵,X = pT*Y可得

X T ∗ A ∗ X = Y T ∗ P ∗ A ∗ P T ∗ Y = Y T ∗ ∑ ∗ Y X^T*A*X = Y^T*P*A*P^T*Y = Y^T*∑*Y XTAX=YTPAPTY=YTY
  我们看出,通过谱分解代换,可以将原来的二次型变换成了一个没有交叉相乘项的二次型,也就是特征值矩阵。

3.5 奇异值分解

3.5.1 奇异值分解的含义

  奇异值分解来源于如下的向量变换,将行空间向量v变换为列空间向量u,其中σ叫做奇异值
A ∗ V = σ ∗ u A*V = σ*u AV=σu
  矩阵形式为
A = U ∗ ∑ ∗ V T A = U*∑*V^T A=UVT
  奇异值分解实际上就是将矩阵A分解为两个正交矩阵U、V和一个对角阵∑的过程。如果A是mxn的,那么U是mxm的,∑是mxn的,V是nxn的

3.5.2 奇异值分解的条件

  任何矩阵都可以做奇异值分解

3.5.3 奇异值分解的方法
3.5.3.1 法1

  第一种方法是分别求AT*A和A*A^T的特征向量,因为
A T ∗ A = V ∗ ( ∑ ) 2 ∗ V T A^T*A = V*(∑)^2*V^T ATA=V()2VT

A ∗ A T = U ∗ ( ∑ ) 2 ∗ U T A*A^T = U*(∑)^2*U^T AAT=U()2UT
  同时可知A的奇异值就是AT*A的特征值开根号

3.5.3.2 法2

  第二种方法是利用定义求U
A T ∗ A = V ∗ ( ∑ ) 2 ∗ V T A^T*A = V*(∑)^2*V^T ATA=V()2VT
  上式可以求得特征向量v和奇异值σ
A ∗ v = σ ∗ u A*v = σ*u Av=σu

u = A ∗ V ∣ ∣ σ ∣ ∣ u = \frac{A*V}{||σ||} u=σAV

3.5.4 长方形矩阵的奇异值分解
3.5.4.1 m>n型

  m>n型的矩阵是细长的,因为左奇异矩阵U必须是m*m的,但是特征值至多有n个,其余不足的应该利用正交性质 u1*u2 = 0,也就是解uT*x=0,从左零空间里面获得基向量,同时注意应该做施密特正交化得到标准正交向量

3.5.4.2 n>n型

  n>m型矩阵是矮胖的,因为右奇异矩阵V必须是n*n的,而特征值至多有m个,不足以获得足够的v向量,其余的应该利用正交特征,利用 A*X = 0,从零空间里面补充基向量,同时也应该做施密特正交化变成标准正交矩阵

3.5.5 奇异值分解深度剖析

  这里来分析一下v向量和u向量的组成成分
A ∗ v = u A*v = u Av=u
  通过上式,我们知道,A的重新线性组合必然也还在其列空间内,所以,向量u应该属于A的列空间,而其余一部分u必须与u1等向量正交,与列空间正交的向量位于左零空间中,所以左奇异矩阵的向量来源为列空间和左零空间,正好列空间与左零空间基向量的和为m

A ∗ v r + 1 = 0 A*v_{r+1}=0 Avr+1=0
  因为并不是所有的奇异值都是非零值,当大于标号r以后的奇异值都是零值。所以,我们得到了上面的式子,可以说明,向量v的一部分成分为A的零空间。而另外一部分v与向量vr+1等正交,零空间的正交向量位于行空间中,所以v实际上来源为零空间和行空间的基向量,正好零空间和行空间的基向量和为n

3.5.6 奇异值分解的应用
3.5.6.1 误差估算

  如果最大的奇异值和最小的奇异值差距过大,那么有微小误差引入会使得系统有较大的误差

3.5.6.2 分解得四个子空间的基向量
3.5.6.3 估计A的秩

  A的秩基本上就是非零奇异值的个数

4. 矩阵的逆

4.1 什么是矩阵的逆

  因为矩阵相当于一种线性变换,利用矩阵A可以把向量v变成另外一种状态,但是我们也希望能够从v的另外一种状态还原回来,这个时候就有了逆矩阵。逆矩阵是用于抵消原来影响而产生的,具有特性
A − 1 ∗ A = I A^{-1}*A = I A1A=I

A ∗ A − 1 = I A*A^{-1} = I AA1=I

4.2 为什么会有不可逆

  不可逆的矩阵其秩一定为0,也就是列向量之间线性相关。假设某个2x2的矩阵A,则两个列向量必然是倍数关系,对呈倍数关系的向量不论怎么组合,最终得到的还是倍数关系,不可能得到单位向量I,也就说,不存在某种线性变换让A矩阵变成I,那么自然不存在A-1,也有了不可逆矩阵A

4.3 逆矩阵的求解方法

4.3.1 矩阵解法
  • 方程式解法

  设矩阵A*B = I,假设B的列向量为v1,…,vn,那么就有
A ∗ v 1 = [ 1....0 ] T A*v1 = [1....0]^T Av1=[1....0]T

A ∗ v 2 = [ 01...0 ] T A*v2 = [0 1...0]^T Av2=[01...0]T
  即构成了方程式解法,太复杂,不推荐

  • 高斯-若尔当消元法(首选)

P ∗ { A I } = { I P ′ } P*\left\{ \begin{matrix} A&I \end{matrix}\right\}=\left\{ \begin{matrix} I&P' \end{matrix}\right\} P{AI}={IP}

则 必 有 P ∗ A = I 和 P ′ = A − 1 则必有 P*A=I和P' = A^{-1} PA=IP=A1

  • 逆矩阵乘法公式
    ( A ∗ B ) − 1 = B − 1 ∗ A − 1 (A*B)^{-1} = B^{-1}*A^{-1} (AB)1=B1A1

( λ A ) − 1 = A − 1 λ (λA)^{-1} = \frac{A^{-1}}{λ} (λA)1=λA1

4.3.2 行列式解法-余子式法

A − 1 = C T d e t A A^{-1} = \frac{C^T}{det{A}} A1=detACT

  c是余子式

4.3.3 微积分解法-泰勒展开

( I − A t ) − 1 = I + A t + . . . . + ( A t ) n (I-At)^{-1}= I + At+....+(At)^n (IAt)1=I+At+....+(At)n
其中t是A的特征向量,如果特征值小于1,该值收敛,结果约等于I+At

4.4 左逆右逆和伪逆

4.4.1 左逆

( ( A T ∗ A ) − 1 ∗ A T ) ∗ A = I ((A^T*A)^{-1}*A^T)*A = I ((ATA)1AT)A=I
  所以(AT*A)-1*AT是A的左逆,适用于r=m且m< n的情况

4.4.2 右逆

A ∗ ( A T ∗ ( A ∗ A T ) − 1 ) = I A*(A^T*(A*A^T)^{-1})=I A(AT(AAT)1)=I
  所以A的右逆是AT*(A*AT)-1,适用于r = n且 n< m的情况

4.4.3 伪逆

  如果r同时小于m和n,就出现了伪逆,伪逆是抛弃了零空间和左零空间之间的转换,仅仅保留了行空间和列空间之间的变换,将向量从列空间变换会行空间而产生的,一般与奇异值分解有关系

A = { U r U m − r } ∗ { D 0 0 0 } ∗ { V r T V n − r T } A = \left\{ \begin{matrix} U_r&U_{m-r} \end{matrix}\right\}*\left\{ \begin{matrix} D&0\\0&0 \end{matrix}\right\}*\left\{ \begin{matrix} V^T_r\\V^T_{n-r} \end{matrix}\right\} A={UrUmr}{D000}{VrTVnrT}
  如果仅仅保留非零的奇异值

A = U r ∗ D ∗ V r T A = U_r*D*V_r^T A=UrDVrT
  伪逆为
A + = V r ∗ D − 1 ∗ U r T A^+ = V_r*D^{-1}*U_r^T A+=VrD1UrT

5.矩阵的秩

5.1 定义

  矩阵的秩就是矩阵主元的个数

5.2 求法

  把矩阵化为阶梯式,有几个主元,矩阵的秩就是几

5.3 矩阵的秩的意义

5.3.1 矩阵的秩与向量空间

  列主元表示列空间有多少向量是线性无关的,行主元表示行空间有多少向量是线性无关的

5.3.2 矩阵的秩与维度

  秩 = 列空间中线性无关向量的个数=基的个数 = 列向量空间的维度

   n-r = 零空间的基的个数=零空间的维度 = 自由变量的个数

5.3.3 矩阵的秩与方程式的解

  横着的主元个数标志着AX=b的解的情况,如果横着的主元个数等于n,说明没有自由变量,如果有解的话,一定是唯一解,所以,横着的主元个数是方程式唯一性的标志。

  竖着的主元个数,标志着列空间的维度,如果竖着的主元个数=m,说明列空间维度是m,必定能够组合出任意一个向量b,所以竖着的主元是方程式解存在性的标志

  所以有这样的结论

  • r = m = n 任意向量都有解,解是唯一解
  • r = m < n 任意向量必定有解,而且是无穷多解
  • r = n < m 不一定每个向量都有解,如果有解,一定是唯一解
  • r<m && r<n 要么无解,要么无穷多解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值