数学板块学习之离散对数(2)_Pohlig-Hellman

离散对数问题

给出 a , b , p a,b,p a,b,p,求解 a x = b   ( m o d    p ) a^x=b\ (mod\ \ p) ax=b (mod  p),其中 p p p是大素数,且p-1是光滑数
光滑数:素因子都是小素数,例如素因子都小于7的叫7-smooth数

Pohlig-Hellman

该算法常用于密码学。我在国内网上真心找不到该算法。有也是用来求椭圆问题的。所以来学习总结一下。
水平有限,英语还不好,国内还没看见讲解。只能在fanqiang学习。英语还差,心态简直炸裂。
给一个样例网站Example of the Pohlig-Hellman,虽然不知道国内能不能进。

因为BSGS的复杂度是 p \sqrt{p} p ,所以当p是一个大素数时,就无法在限定时间内解决问题。也就用到了该算法。我们令 p − 1 = p 1 e 1 p 2 e 2 ⋯ p k e k p-1=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k} p1=p1e1p2e2pkek,算法复杂度大约为 O ( ∑ i = 1 k e i ( l o g   n + p i ) ) O(\displaystyle\sum_{i=1}^{k}e_i(log\ {n}+\sqrt{p_i})) O(i=1kei(log n+pi )),最坏的情况下时间也就和 B S G S BSGS BSGS差不多。

首先找到 a a a相对于 p p p的阶 n n n(阶不一定是p-1,直接用p-1会出错)
n = p 1 e 1 p 2 e 2 ⋯ p k e k n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k} n=p1e1p2e2pkek
能得到 k k k x = x i   ( m o d    p i e i ) x=x_i\ (mod\ \ p_i^{e_i}) x=xi (mod  piei),然后用中国剩余定理(CRT)合并求出 x   ( m o d    n ) x\ (mod\ \ n) x (mod  n)

对于 x i x_i xi:
我们先知道迭代函数
对于 N = p 1 e 1 p 2 e 2 ⋯ p k e k N=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k} N=p1e1p2e2pkek
t 0 , t 1 ⋯ t_0,t_1\cdots t0,t1是一个大于1的素数序列
{ t 0 = ⋯ = t e 1 − 1 = p 1 t e 1 = ⋯ = t e 1 + e 2 − 1 = p 2 ⋮ t u − e k + 1 = ⋯ = t u − 1 = p k (1) \begin{cases}t_0=\cdots=t_{e_1-1}=p_1\\ t_{e_1}=\cdots=t_{e_1+e_2-1}=p_2\\ \vdots\\ t_{u-e_k+1}=\cdots=t_{u-1}=p_k \end{cases}\tag{1} t0==te11=p1te1==te1+e21=p2tuek+1==tu1=pk(1)
从而 N = t 0 t 1 ⋯ t u − 1 N=t_0t_1\cdots t_{u-1} N=t0t1tu1,其中 u = ∑ i = 1 k e i u=\displaystyle\sum_{i=1}^{k}e_i u=i=1kei
对于任意整数 x , ( 0 ≤ x ≤ N − 1 ) x,(0\leq x\leq N-1) x,(0xN1),有式 ( 2 ) (2) (2)成立
x = c 0 + c 1 t 0 + c 2 t 0 t 1 + ⋯ + c u − 1 t 0 t 1 ⋯ t u − 2 (2) x=c_0+c_1t_0+c_2t_0t_1+\cdots+c_{u-1}t_0t_1\cdots t_{u-2}\tag{2} x=c0+c1t0+c2t0t1++cu1t0t1tu2(2)
其中系数 c i c_i ci满足 0 ≤ c i < t i − 1 0\leq c_i < t_{i-1} 0ci<ti1
我们令 s j = c 0 + c 1 t 0 + c 2 t 0 t 1 + ⋯ + c j − 1 t 0 t 1 ⋯ t j − 2 , ( 0 ≤ j < u − 1 ) s_j=c_0+c_1t_0+c_2t_0t_1+\cdots+c_{j-1}t_0t_1\cdots t_{j-2},(0\leq j < u-1) sj=c0+c1t0+c2t0t1++cj1t0t1tj2,(0j<u1)
s j + 1 = s j + z j t 0 t 1 ⋯ t j − 1 s_{j+1}=s_j+z_jt_0t_1\cdots t_{j-1} sj+1=sj+zjt0t1tj1
由式 ( 1 ) , ( 2 ) (1),(2) (1),(2)得:
{ x ≡ c 0   ( m o d    t 0 ) x − c 0 ≡ c 1 t 0   ( m o d    t 1 ) ⋮ x − s u − 2 ≡ c u − 1 t 0 t 1 ⋯ t u − 2   ( m o d    t u − 1 ) (3) \begin{cases}x\equiv c_0\ (mod\ \ t_0)\\ x-c_0\equiv c_1t_0\ (mod\ \ t_1)\\ \vdots\\ x-s_{u-2}\equiv c_{u-1}t_0t_1\cdots t_{u-2}\ (mod\ \ t_{u-1})\\ \end{cases}\tag{3} xc0 (mod  t0)xc0c1t0 (mod  t1)xsu2cu1t0t1tu2 (mod  tu1)(3)
( 3 ) (3) (3)即为求解的迭代函数

因此我们可以通过分解后的模数 p i e i p_i^{e_i} piei x i = c 0 + c 1 p i + c 2 p i 2 + ⋯ + c e i − 1 p i e i − 1 (4) x_i=c_0+c_1p_i+c_2p_i^2+\cdots+c_{e_i-1}p_i^{e_i-1}\tag{4} xi=c0+c1pi+c2pi2++cei1piei1(4)
所以由 x = x i   ( m o d    p i e i ) x=x_i\ (mod\ \ p_i^{e_i}) x=xi (mod  piei) x = x i + s ⋅ p i e i (5) x=x_i+s·p_i^{e_i}\tag{5} x=xi+spiei(5)
由式 ( 3 ) ( 4 ) (3)(4) (3)(4)知我们此次要求的
{ x i ≡ c 0   ( m o d    p i ) x i − c 0 ≡ c 1 p i   ( m o d    p i ) ⋮ x i − s e i − 2 ≡ c e i − 1 p i e i − 1   ( m o d    p i ) (6) \begin{cases}x_i\equiv c_0\ (mod\ \ p_i)\\ x_i-c_0\equiv c_1p_i\ (mod\ \ p_i)\\ \vdots\\ x_i-s_{e_i-2}\equiv c_{e_i-1}p_i^{e_i-1}\ (mod\ \ p_i)\\ \end{cases}\tag{6} xic0 (mod  pi)xic0c1pi (mod  pi)xisei2cei1piei1 (mod  pi)(6)
由式 ( 5 ) ( 6 ) (5)(6) (5)(6)求出 x ≡ x i   ( m o d   p i e i ) x\equiv x_i\ (mod\ p_i^{e_i}) xxi (mod piei)
其中 c 0 c_0 c0的求法:
b n / p i ≡ ( a x ) n / p i   ( m o d    p ) ≡ ( a c 0 + c 1 p i + c 2 p i 2 + ⋯ + c e i − 1 p i e i − 1 + s ⋅ p i e i ) n / p i   ( m o d    p ) ≡ ( a c 0 ) n / p i   ( m o d    p ) (7) \begin{aligned} b^{n/p_i}&\equiv (a^x)^{n/p_i}\ (mod\ \ p)\\ &\equiv (a^{c_0+c_1p_i+c_2p_i^2+\cdots+c_{e_i-1}p_i^{e_i-1}+s·p_i^{e_i}})^{n/p_i}\ (mod\ \ p)\\ &\equiv (a^{c_0})^{n/p_i}\ (mod\ \ p)\\ \end{aligned}\tag{7} bn/pi(ax)n/pi (mod  p)(ac0+c1pi+c2pi2++cei1piei1+spiei)n/pi (mod  p)(ac0)n/pi (mod  p)(7)
学到这里的时候我觉得有点懵,实在不知道怎么把 c 1 p i + c 2 p i 2 + ⋯ + c e i − 1 p i e i − 1 + s ⋅ p i e i c_1p_i+c_2p_i^2+\cdots+c_{e_i-1}p_i^{e_i-1}+s·p_i^{e_i} c1pi+c2pi2++cei1piei1+spiei舍掉的。
没找到解释,我是通过原根推的,我推的是(不知道正确性?):
由原根性质,设 g g g p p p的一个原根
b = g k , a = g t b=g^k,a=g^t b=gk,a=gt,所以有 g k ≡ ( g t ) x   ( m o d    p ) g^k\equiv (g^t)^x\ (mod\ \ p) gk(gt)x (mod  p),其中 t x ≡ k   ( m o d    p − 1 ) tx\equiv k\ (mod\ \ p-1) txk (mod  p1)
( g k ) p − 1 p i ≡ [ ( g t ) c 0 + c 1 p i + c 2 p i 2 + ⋯ + c e i − 1 p i e i − 1 + s ⋅ p i e i ] p − 1 p i   ( m o d    p ) g k ⋅ ( p − 1 ) p i ≡ g t ⋅ ( p − 1 ) ⋅ c 0 p i + t ⋅ ( p − 1 ) ⋅ c 1 + t ⋅ ( p − 1 ) c 2 p i + ⋯ + t ⋅ ( p − 1 ) ⋅ s ⋅ p i e i − 1   ( m o d    p ) \begin{aligned} (g^k)^{\frac{p-1}{p_i}}&\equiv [(g^t)^{c_0+c_1p_i+c_2p_i^2+\cdots+c_{e_i-1}p_i^{e_i-1}+s·p_i^{e_i}}]^{\frac{p-1}{p_i}}\ (mod\ \ p)\\ g^{\frac{k·(p-1)}{p_i}}&\equiv g^{\frac{t·(p-1)·c_0}{p_i}+t·(p-1)·c_1+t·(p-1)c_2p_i+\cdots+t·(p-1)·s·p_i^{e_i-1}}\ (mod\ \ p) \end{aligned} (gk)pip1gpik(p1)[(gt)c0+c1pi+c2pi2++cei1piei1+spiei]pip1 (mod  p)gpit(p1)c0+t(p1)c1+t(p1)c2pi++t(p1)spiei1 (mod  p)
因此 k ⋅ ( p − 1 ) p i ≡ t ⋅ ( p − 1 ) ⋅ c 0 p i + t ⋅ ( p − 1 ) ⋅ c 1 + t ⋅ ( p − 1 ) c 2 p i + ⋯ + t ⋅ ( p − 1 ) ⋅ s ⋅ p i e i − 1   ( m o d    p − 1 ) \frac{k·(p-1)}{p_i}\equiv \frac{t·(p-1)·c_0}{p_i}+t·(p-1)·c_1+t·(p-1)c_2p_i+\cdots+t·(p-1)·s·p_i^{e_i-1}\ (mod\ \ p-1) pik(p1)pit(p1)c0+t(p1)c1+t(p1)c2pi++t(p1)spiei1 (mod  p1)
根据模运算显然
k ⋅ ( p − 1 ) p i ≡ t ⋅ ( p − 1 ) ⋅ c 0 p i   ( m o d    p − 1 ) \frac{k·(p-1)}{p_i}\equiv \frac{t·(p-1)·c_0}{p_i}\ (mod\ \ p-1) pik(p1)pit(p1)c0 (mod  p1)
显然式 ( 7 ) (7) (7)的阶是 n n n,原根的阶是 p − 1 p-1 p1,性质相同,故式 ( 7 ) (7) (7)成立。

因此我们可以通过 b n / p i ≡ ( a c 0 ) n / p i   ( m o d    p ) b^{n/p_i}\equiv (a^{c_0})^{n/p_i}\ (mod\ \ p) bn/pi(ac0)n/pi (mod  p)求解出 c 0 c_0 c0
因为 c 0 ∈ [ 0 , p i − 1 ] c_0\in [0,p_i-1] c0[0,pi1],所以 p i p_i pi不是很大的情况下完全可以解。
依旧是BSGS的思想,我们可以将 a n / p i , a 2 n / p i , ⋯   , a ( p i − 1 ) n / p i a^{n/p_i},a^{2n/p_i},\cdots,a^{(p_i-1)n/p_i} an/pi,a2n/pi,,a(pi1)n/pi存储。
然后查找即可。

我们令 b 1 = b ⋅ a − c 0 b_1=b·a^{-c_0} b1=bac0,所以可以通过 b 1 n / p i 2 ≡ ( a c 1 ) n / p i   ( m o d    p ) b_1^{n/p_i^2}\equiv (a^{c_1})^{n/p_i}\ (mod\ \ p) b1n/pi2(ac1)n/pi (mod  p)求解出 c 1 c_1 c1
我们令 b 2 = b 1 ⋅ a − c 1 p i b_2=b_1·a^{-c_1p_i} b2=b1ac1pi,所以可以通过 b 2 n / p i 3 ≡ ( a c 2 ) n / p i   ( m o d    p ) b_2^{n/p_i^3}\equiv (a^{c_2})^{n/p_i}\ (mod\ \ p) b2n/pi3(ac2)n/pi (mod  p)求解出 c 2 c_2 c2
其他同理。

这样我们就已知了所有同余式 x ≡ x i ( m o d    p i e i ) x\equiv x_i (mod\ \ p_i^{e_i}) xxi(mod  piei)
当然,如果不存在这样的同余式,也就代表着无解。

然后一发CRT即可。

代码

#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <ctime>
using namespace std;
#define me(x,y) memset(x,y,sizeof x)
#define MIN(x,y) (x) < (y) ? (x) : (y)
#define MAX(x,y) (x) > (y) ? (x) : (y)
#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))

typedef long long ll;
typedef unsigned long long ull;

const int maxn = 1e5+10;
const ll INF = 0x3f3f3f3f;
const int MOD = 1e9+7;
const int eps = 1e-8;

ll qmul(ll a,ll b,ll p){
    return (a*b-(ll)((long double)a*b/p)*p+p)%p;
}
ll qpow(ll a,ll b,ll p){
    ll ans=1;
    while(b){
        if(b&1) ans = qmul(ans,a,p);
        a = qmul(a,a,p);
        b >>= 1;
    }
    return ans;
}

const int S=5;

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=qpow(a,x,n);
    long long last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=qmul(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//偶数
    long long x=n-1;
    long long t=0;
    while((x&1)==0){x>>=1;t++;}
    for(int i=0;i<S;i++)
    {
        long long a=rand()%(n-1)+1;
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}

long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始

long long gcd(long long a,long long b)
{
    if(a==0)return 1;
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}

long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(qmul(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k){y=x0;k+=k;}
    }
}
//对n进行素因子分解
map<ll,ll> mp;
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        mp[n]++;
        return;
    }
    long long p=n;
    while(p>=n) p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}


ll get_n(ll x,ll a,ll p){
    tol = 0;
    mp.clear();
    findfac(x);
    for(int i= 0; i < tol; ++i){
        while(x%factor[i] == 0 && qpow(a,x/factor[i],p) == 1) 
            x /= factor[i];
    }
    mp.clear();
    findfac(x);
    return x;
}

void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
    if(!b){
        d = a;x = 1;y = 0;return;
    }
    ex_gcd(b,a%b,d,y,x);
    y -= x*(a/b);
}

ll crt(int n,ll *a,ll *m){ // x%m[i]=a[i]
    ll M = 1,ret = 0;
    ll x,y,d;
    for(int i = 1; i <= n; ++i) M *= m[i];
    for(int i = 1; i <= n; ++i){
        ll Mi = M / m[i];
        ex_gcd(Mi,m[i],d,x,y);
        x = (x%m[i]+m[i])%m[i];
        ret = (ret+qmul(qmul(a[i],Mi,M),x,M))%M;
    }
    return (ret+M)%M;
}
map<ll,ll> hs;
ll get_c(ll b,ll p,ll pi){
    for(int i = 0; i < pi; ++i){
        if(b == hs[i]) return i;
    }
    return -1;
}

ll xx[maxn],pp[maxn];
ll  Pohlig_Hellman(ll a,ll b,ll p){
    ll n = get_n(p-1,a,p);  //a对p的阶
    ll x,y,inv = qpow(a,p-2,p),col = 0;
    for(auto it : mp){      //枚举素因子
        hs.clear();
        int pi = it.first,count = it.second;
        ll tmp = 1,cnt = qpow(a,n/pi,p);
        ll bb = b,an = 0;
        for(int i = 0; i < pi; ++i){    //哈希存储a^(n/pi),a^(2n/pi),a^(3n/pi)...
            hs[i] = tmp;
            // cout<<"hs["<<i<<"]:"<<hs[i]<<endl;
            tmp = qmul(cnt,tmp,p);
        }
        ll now = n;
        for(int i = 1; i <= count; ++i){    
            now = n/qpow(pi,i,p);   // n / (pi^i)
            ll res = qpow(bb,now,p),c;
            c = get_c(res,p,pi);
            // cout<<"c: "<<c<<"  ";
            if(c == -1) return -1;
            ll rel = c*qpow(pi,i-1,p);
            an += rel;
            ll inva = qpow(qpow(a,rel,p),p-2,p);
            // cout<<"inva:"<<inva<<"  ";
            bb = qmul(bb,inva,p);
            // cout<<"bb: "<<bb<<endl;
        }
        // cout<<endl;
        xx[++col] = an;
        pp[col] = qpow(pi,count,p);
        // cout<<"xx: " <<xx[col]<<"  pp:"<<pp[col]<<endl;
    }
    if(col == 0) return -1;
    return crt(col,xx,pp);
}

int main(){
    ios::sync_with_stdio(false);
    int t;
    cin>>t;
    while(t--){
        ll p,a,b;
        cin>>p>>a>>b;
        ll ans = Pohlig_Hellman(a,b,p);
        if(ans == -1) cout<<-1<<endl;
        else cout<<ans<<endl;
    }
    return 0;
}
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值