1.Anaconda相关
1.1 使用anaconda展示现有的环境:
conda env list
1.2 删除现有的anaconda 虚拟环境 :
conda remove -n XXXX(虚拟环境名称) --all
会有个选项问你是不是全删了,选择y
2.配置CUDA(cuda runtime),如何选择CUDA版本
- 因为如果使用GPU版本的Pytorch,则需要使用CUDA runtime
补充一些背景知识:
首先,显卡是一个硬件,想要电脑识别出这个硬件则需要安装一个驱动(有了这个驱动就可以识别出这个显卡)
在安装驱动的时候,也同时安装了一个叫 cuda driver 的东西。这个cuda driver(显卡驱动)是一个可以让显卡进行并行运算的平台(也可以理解为软件)。当我们的电脑想利用显卡去做一些并行运算的时候,就可以通过cuda driver去操作显卡。
有了显卡和显卡驱动和cuda driver,我们计算机就可以利用显卡去做一些并行计算。
但是对于pytorch和一些使用GPU的其他软件来说,还得需要一个叫cuda runtime的东西。这样,pytorch才可以通过cuda runtime 来调用 cuda driver 进而调用显卡 。因此这种层层调用的关系需要这三者层层匹配。
因此,要想让pytorch的GPU版本 成功运用 我们的GPU,则需要 :
显卡(GPU) && 显卡驱动(cuda driver version)&& Cuda runtime version 三者相互匹配
一般来说,为了防止cuda runtime 版本高导致支持A操作,但是 cuda driver版本低不支持A操作,所以,一般cuda runtime的版本要选择低于cuda driver的
同时,我们的显卡驱动cuda driver 要支持硬件显卡的算力
并且:其实,当cuda runtime version 的版本支持显卡对应的算力的时候,cuda driver 的版本也能够支持显卡对应的算力。
那么,匹配这三者的步骤如下:
① 由于显卡是固定的,那么显卡的算力也是固定的,于是我们去确定显卡算力:
其实就是确认自己的显卡型号,对于win就是:打开 任务管理器 -- 点击 “性能”选项卡
我这个就是GeForce RTX 2060
②根据这个算力去寻找哪些cuda runtime支持对应的算力
访问cuda的维基百科,它列出了一张表,展示显卡的型号和对应的算力、架构等等。
网址如下(需要科学上网,所以我也截了个图放在下方): CUDA - Wikipedia
对应一下,我的GPU就是算力(compute capability)为7.5 架构为Turing
那么就对应下表,找出支持的 CUDA SDK (CUDA SDK 就是 我们之前说的CUDA Runtime):
发现,后面几个,即CUDA SDK 10.0-10.2 ; 11.0 ; 11.1-11.4 ; 11.5-11.7.1都是将7.5这个算力包含进去了,即这些CUDA SDK 都是可以满足我们显卡算力的CUDA Rutime
③接下来就去看自己的cuda driver的版本是多少。
使用命令 nvidia-smi 得到我们的CUDA version : 如图所示,我的cuda version 是11.1
于是我们进入pytorch官网,找一个比11.1小的CUDA Runtime 版本,我选择了10.2 版本的CUDA Runtime(Compute Platform 选择 CUDA 10.2),选择安装的方式pip , 然后往下看,理论上会生成对应的安装命令语句,但是,显示的是如下图的提示:
pytorch官网告诉我们:
CUDA-10.2 PyTorch builds are no longer available for Windows, please use CUDA-11.6
于是,我们最好是更新电脑上的cuda 驱动版本 (方法如下):如何在windows上 安装&更新 显卡的驱动_chuanauc的博客-CSDN博客
现在我们更新完我们的显卡驱动,此时在命令行再次输入nvidia-smi命令,显示我们的cuda driver版本是11.7 ,如下图所示:
于是我们带着新的cuda驱动版本重新杀回pytorch下载界面:选择最新的可用cuda runtime 版本,比如现在我的cuda driver升级到了11.7那么就可以在compute platform上选择:cuda 11.6的版本。
注意:尽可能选择高版本的cuda runtime,选择最新的,不要选择之前老旧版本的
PS:其实我们发现CUDA-10.2 PyTorch builds are no longer available for Windows, please use CUDA-11.6这类不支持错误的时候,也可以坚持下载老版本:具体方法是
①点击 Get Start ; ②选择Previous Pytorch Version选项卡
于是就可以找到老的版本,就可以选择对应的命令 下载安装就好了
(由于我们直接将cuda driver升级到了最新的版本,所以就不涉及到了很多的cuda driver和cuda runtime的版本匹配问题了,就比较简单)
终于到了可以安装pytorch的地方
3. 配置对应PyTorch
在这个网址下载就可了:
按下面的 对应命令行 在cmd中执行就好了
两个注意:①别安装错了虚拟环境②安装的时候,如果已经自己换成清华等国内的镜像了,那,就建议下载的时候,把vpn关了,否则就容易出现网络问题导致报错
下载时会出现的界面:(我后来下载的是CUDA11.3版本)
下载完长这样:
【PS】pytorch一般包含三个包:torch、torchvision、torchaudio。其中,torch是pytorch的核心包,集成了pytorch的一些核心功能;torchvision是pytorch提供给图像处理的一个包,里面包括一些可以用来给图片进行处理的工具;torchaudio提供给语言处理的一些包
如果使用conda安装,那么会使用到一个cudatoolkit是一个conda用于安装包的套件
cudnn是一个可以用GPU进行加速的神经网络的包,pytorch现在已经将cudnn集成进来了,下一个pytorch就把cudnn等一系列全集成起来了
【PS】验证一下pytorch 是否安装成功:
按以下命令去执行,如果torch.cuda.is_available()返回True证明电脑的gpu可以被pytorch使用
ref :
我爱土堆,大家有时间去看看土堆视频的时候,有币捧个币场,没币捧个赞场。
土堆真的讲的太好了,然后,如果愿意,还可以请土堆喝咖啡,为大佬递上卡布奇诺~
方法是:这个是土堆的csdn网址:可以进去随便找篇文章,点击打赏就可以了,再次谢谢土堆www我是土堆的博客_CSDN博客-Windows下PyTorch深度学习环境配置,PyTorch 目标检测入门实战系列,PyTorch 深度学习快速入门教程领域博主
参考视频链接:
1. 硬件、cuda driver 、cuda runtime之间的版本匹配的逻辑关系:
23. GPU版本-GPU与CUDA准备工作_哔哩哔哩_bilibili
2. 简易的上手版操作(通过将cuda driver 更新到最新来方便匹配 "硬件、cuda driver 、cuda runtime"这三者 )
25. GPU版本-判断CUDA Runtime 版本_哔哩哔哩_bilibili
3. 安装pytorch :