在win上配置pytorch:(PyCharm & Anaconda & CUDA版本 和 Nvidia显卡 和 pytorch版本 如何匹配)

1.Anaconda相关

1.1 使用anaconda展示现有的环境:

conda env list

1.2 删除现有的anaconda 虚拟环境 :

conda remove -n XXXX(虚拟环境名称) --all

会有个选项问你是不是全删了,选择y

2.配置CUDA(cuda runtime),如何选择CUDA版本

  • 因为如果使用GPU版本的Pytorch,则需要使用CUDA runtime 

补充一些背景知识:

首先,显卡是一个硬件,想要电脑识别出这个硬件则需要安装一个驱动(有了这个驱动就可以识别出这个显卡)

在安装驱动的时候,也同时安装了一个叫 cuda driver 的东西。这个cuda driver(显卡驱动)是一个可以让显卡进行并行运算的平台(也可以理解为软件)。当我们的电脑想利用显卡去做一些并行运算的时候,就可以通过cuda driver去操作显卡。

有了显卡和显卡驱动和cuda driver,我们计算机就可以利用显卡去做一些并行计算。

但是对于pytorch和一些使用GPU的其他软件来说,还得需要一个叫cuda runtime的东西。这样,pytorch才可以通过cuda runtime 来调用 cuda driver 进而调用显卡 。因此这种层层调用的关系需要这三者层层匹配。

因此,要想让pytorch的GPU版本 成功运用 我们的GPU,则需要 :

显卡(GPU) && 显卡驱动(cuda driver version)&& Cuda runtime version  三者相互匹配

一般来说,为了防止cuda runtime 版本高导致支持A操作,但是 cuda driver版本低不支持A操作,所以,一般cuda runtime的版本要选择低于cuda driver的

同时,我们的显卡驱动cuda driver 要支持硬件显卡的算力

并且:其实,当cuda runtime version 的版本支持显卡对应的算力的时候,cuda driver 的版本也能够支持显卡对应的算力。

那么,匹配这三者的步骤如下:

① 由于显卡是固定的,那么显卡的算力也是固定的,于是我们去确定显卡算力:

其实就是确认自己的显卡型号,对于win就是:打开 任务管理器 -- 点击 “性能”选项卡 

我这个就是GeForce RTX 2060

②根据这个算力去寻找哪些cuda runtime支持对应的算力

访问cuda的维基百科,它列出了一张表,展示显卡的型号和对应的算力、架构等等。

网址如下(需要科学上网,所以我也截了个图放在下方): CUDA - Wikipedia

 

 对应一下,我的GPU就是算力(compute capability)为7.5 架构为Turing

 那么就对应下表,找出支持的 CUDA SDK (CUDA SDK 就是 我们之前说的CUDA Runtime):

 发现,后面几个,即CUDA SDK 10.0-10.2 ; 11.0 ; 11.1-11.4 ; 11.5-11.7.1都是将7.5这个算力包含进去了,即这些CUDA SDK 都是可以满足我们显卡算力的CUDA Rutime

③接下来就去看自己的cuda driver的版本是多少。

使用命令 nvidia-smi 得到我们的CUDA version :  如图所示,我的cuda version 是11.1

 于是我们进入pytorch官网,找一个比11.1小的CUDA Runtime 版本,我选择了10.2 版本的CUDA Runtime(Compute Platform 选择 CUDA 10.2),选择安装的方式pip , 然后往下看,理论上会生成对应的安装命令语句,但是,显示的是如下图的提示:

 pytorch官网告诉我们:

CUDA-10.2 PyTorch builds are no longer available for Windows, please use CUDA-11.6

于是,我们最好是更新电脑上的cuda 驱动版本 (方法如下):如何在windows上 安装&更新 显卡的驱动_chuanauc的博客-CSDN博客

现在我们更新完我们的显卡驱动,此时在命令行再次输入nvidia-smi命令,显示我们的cuda driver版本是11.7 ,如下图所示:

于是我们带着新的cuda驱动版本重新杀回pytorch下载界面:选择最新的可用cuda runtime 版本,比如现在我的cuda driver升级到了11.7那么就可以在compute platform上选择:cuda 11.6的版本。

注意:尽可能选择高版本的cuda runtime,选择最新的,不要选择之前老旧版本的

PS:其实我们发现CUDA-10.2 PyTorch builds are no longer available for Windows, please use CUDA-11.6这类不支持错误的时候,也可以坚持下载老版本:具体方法是

①点击 Get Start  ; ②选择Previous Pytorch Version选项卡

 于是就可以找到老的版本,就可以选择对应的命令 下载安装就好了

 (由于我们直接将cuda driver升级到了最新的版本,所以就不涉及到了很多的cuda driver和cuda runtime的版本匹配问题了,就比较简单)

终于到了可以安装pytorch的地方

3. 配置对应PyTorch

在这个网址下载就可了:

Start Locally | PyTorch

按下面的 对应命令行 在cmd中执行就好了

两个注意:①别安装错了虚拟环境②安装的时候,如果已经自己换成清华等国内的镜像了,那,就建议下载的时候,把vpn关了,否则就容易出现网络问题导致报错 

下载时会出现的界面:(我后来下载的是CUDA11.3版本)

下载完长这样:

【PS】pytorch一般包含三个包:torch、torchvision、torchaudio。其中,torch是pytorch的核心包,集成了pytorch的一些核心功能;torchvision是pytorch提供给图像处理的一个包,里面包括一些可以用来给图片进行处理的工具;torchaudio提供给语言处理的一些包

如果使用conda安装,那么会使用到一个cudatoolkit是一个conda用于安装包的套件
cudnn是一个可以用GPU进行加速的神经网络的包,pytorch现在已经将cudnn集成进来了,下一个pytorch就把cudnn等一系列全集成起来了

【PS】验证一下pytorch 是否安装成功:

按以下命令去执行,如果torch.cuda.is_available()返回True证明电脑的gpu可以被pytorch使用 


ref :

我爱土堆,大家有时间去看看土堆视频的时候,有币捧个币场,没币捧个赞场。

土堆真的讲的太好了,然后,如果愿意,还可以请土堆喝咖啡,为大佬递上卡布奇诺~

方法是:这个是土堆的csdn网址:可以进去随便找篇文章,点击打赏就可以了,再次谢谢土堆www我是土堆的博客_CSDN博客-Windows下PyTorch深度学习环境配置,PyTorch 目标检测入门实战系列,PyTorch 深度学习快速入门教程领域博主

参考视频链接:

1. 硬件、cuda driver 、cuda runtime之间的版本匹配的逻辑关系:

23. GPU版本-GPU与CUDA准备工作_哔哩哔哩_bilibili

2. 简易的上手版操作(通过将cuda driver 更新到最新来方便匹配 "硬件、cuda driver 、cuda runtime"这三者 )

25. GPU版本-判断CUDA Runtime 版本_哔哩哔哩_bilibili

3. 安装pytorch :

26. GPU版本-安装PyTorch(方法1)_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值