CUDA下载与对应版本查询

1 算力,CUDA Driver Version,CUDA Runtime Version

  • 比如说我们进入pytorch官网中,点击下载,如何找到适合自己的CUDA版本
    在这里插入图片描述
  • CUDA 与三个东西息息相关:第一,显卡的硬件;第二,显卡的驱动,显卡的驱动和cuda driver version是密切相关的,第三,cuda runtime version,是cuda运行时的一个版本
  • 一定要让他们三个相互匹配,才能用GPU
    在这里插入图片描述

2 显卡型号

  • 首先确定自己的显卡型号,通过驱动软件或者是任务管理器
  • 打开cuda官网看型号链接: CUDA官网
    在这里插入图片描述
  • 其次确认CUDA Runtime版本
    在这里插入图片描述
  • 最后看自己的驱动CUDA Driver Version
  • 打开命令行窗口,输入nvidia-smi,看见cuda的版本
  • 去pytorch下载对应的cuda版本即可,在可用的当中选择最新的

3 实操

  • 进入终端,首先创建一个虚拟环境conda create -n wuqi python=3.7
  • 输入conda activate wuqi(wuqi为虚拟环境名)
  • 进入 pytorch官网
  • 点击conda,找到对应的下载指令
  • 如果下载太慢可以选择镜像地址
    • 清华镜像:http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
    • 北京外国语大学镜像:http://mirrors.bfsu.edu.cn.anaconda/cloud/pytorch/
    • 阿里巴巴镜像: http://mirrors.aliyun.com/anaconda/cloud/pytorch/
    • 南京大学镜像: https://mirror.nju.edu.cn/pub/anaconda/cloud/pytorch/
  • 如果是linux就找linux版本,Mac就找mac
  • 进入镜像官网后找到链接进行复制,粘贴在原来-c 后面,替换掉python
  • mac安装anaconda教程

4 镜像

  • 如果安装的过程中某个东西很慢,就可以分开进行安装
  • 比如原本我们要安装torchaudio cudatoolkit=11.3
  • 那么我们就可以单独的安装,并找到对应的镜像源,这里用南京镜像源举例链接: 南京大学镜像
  • conda install PyTorch torch vision torchaudio -c https://mirror.nju.edu.cn/anaconda/cloud/pytorch/linux-64/
  • conda install cudatoolkit=版本 -c https://mirror.nju.edu.cn/anaconda/pkgs/main/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simple_learning_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值