Python数据分析与挖掘实战第五章笔记之聚类分析

本文介绍了聚类分析的基本概念,包括K-Means、K-Medoids等常见聚类方法,并详细阐述了K-Means聚类算法的过程和目标函数。通过Python实现数据读取、预处理,应用KMeans进行聚类,并展示了聚类结果的可视化方法。
摘要由CSDN通过智能技术生成
#聚类分析:
# 聚类分析是在没有给定划分类别的情况下,根据数据相似度进行样本分组的一种方法。可以建立在无类标记的数据上,是一种非监督的学习算法。划分原则是组内距离最小化,组间距离最大化。
# 常用的聚类方法:
# 1、划分方法:K-MeansK均值),K-MedoidsK-中心点),Clarans算法
# 2、层次分析方法:BIRCH算法(平衡迭代规约和聚类),CURE算法(代表点聚类),CHAMELEON算法(动态模型)。
# 3、基于密度的方法:DBSCAN算法,DENCLUE算法,OPTICS算法
# 4、基于网格的方法:STING算法,CLIOUE算法,WACE-CLISTER算法
# 5、基于模型的方法:统计学方法,神经网络方法。
# 常用聚类分析算法:
# 1K-MEANSK-均值聚类也称快速聚类法,在最小化误差函数的基础上将数据划分为预定的类数K。原理简单,便于处理大量数据
# 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值