#聚类分析: # 聚类分析是在没有给定划分类别的情况下,根据数据相似度进行样本分组的一种方法。可以建立在无类标记的数据上,是一种非监督的学习算法。划分原则是组内距离最小化,组间距离最大化。 # 常用的聚类方法: # 1、划分方法:K-Means(K均值),K-Medoids(K-中心点),Clarans算法 # 2、层次分析方法:BIRCH算法(平衡迭代规约和聚类),CURE算法(代表点聚类),CHAMELEON算法(动态模型)。 # 3、基于密度的方法:DBSCAN算法,DENCLUE算法,OPTICS算法 # 4、基于网格的方法:STING算法,CLIOUE算法,WACE-CLISTER算法 # 5、基于模型的方法:统计学方法,神经网络方法。 # 常用聚类分析算法: # 1、K-MEANS:K-均值聚类也称快速聚类法,在最小化误差函数的基础上将数据划分为预定的类数K。原理简单,便于处理大量数据 # 2、
Python数据分析与挖掘实战第五章笔记之聚类分析
最新推荐文章于 2024-10-05 18:44:13 发布
本文介绍了聚类分析的基本概念,包括K-Means、K-Medoids等常见聚类方法,并详细阐述了K-Means聚类算法的过程和目标函数。通过Python实现数据读取、预处理,应用KMeans进行聚类,并展示了聚类结果的可视化方法。
摘要由CSDN通过智能技术生成