Python中层次聚类的艺术:从原理到实践的全面解析

数据聚类在数据分析领域扮演着重要的角色,它可以帮助我们将相似的数据点分组在一起,揭示数据集的内在结构和模式。层次聚类(Hierarchical Clustering)作为一种强大的聚类方法,不仅可以实现数据的分组,还能生成具有层次结构的聚类结果。本文将深入探讨层次聚类的原理,介绍如何在Python中实现层次聚类,并通过实际案例演示其应用。

写在开头

数据聚类是一项常见的数据分析任务,它可以帮助我们将数据点划分为具有相似特征的组。这种组织有助于我们理解数据集的结构、发现异常值以及进行预测和决策。层次聚类是一种特殊的聚类方法,它基于数据点之间的相似度逐步将数据分组成层次结构。这种分层结构不仅有助于分析数据,还能为可视化提供有力支持。

1. 层次聚类简介

层次聚类(Hierarchical Clustering)是一种重要的聚类分析方法,它具有独特的特点和应用优势。在本节中,我们将深入探讨层次聚类的定义、原理以及它与其他聚类方法的区别。

1.1 定义和原理

层次聚类是一种聚类分析方法,其核心思想是通过逐步合并或划分数据点来构建聚类的层次结构。这种层次结构通常表示为树状图,称为聚类树状图(Dendrogram)。层次聚类的目标是将相似的数据点放在同一组中,并逐渐合并这些组,直到构建完整的层次结构。

具体而言,层次聚类的过程如下:

  • 开始阶段:层次聚类从每个数据点作为一个单独的聚类开始,因此初始时会有N个聚类,其中N是数据点的数量。

  • 合并过程:在每一步中,算法会合并最相似的两个聚类,将它们视为一个新的聚类。相似性的度量方法通常使用距离或相似度度量。

  • 迭代过程:迭代重复上述合并过程,直到只剩下一个聚类,即整个数据集作为一个聚类。这时,构建完成了聚类树状图。

  • 聚类树状图:聚类树状图展示了合并过程的历史记录,其中每个节点代表一个聚类,叶子节点代表单个数据点。树状图的纵轴表示聚类间的相似度或距离。

原理概述:

层次聚类的原理可以总结为以下几个关键步骤:

  1. 初始化:将每个数据点视为一个初始聚类,形成N个初始聚类,其中N是数据点的数量。

  2. 相似度度量:计算每对聚类之间的相似度或距离。常用的相似度度量包括欧氏距离、曼哈顿距离、余弦相似度等。这一步骤的选择对最终的聚类结果影响很大。

  3. 合并最相似聚类:选择相似度最高的两个聚类,将它们合并为一个新的聚类。合并的规则可以根据不同的链接标准(如最短链接、最长链接、平均链接、Ward方法)来确定。

  4. 更新相似度矩阵:更新相似度矩阵,反映合并后的聚类之间的相似度。

  5. 重复迭代:重复步骤3和步骤4,直到只剩下一个聚类为止。此时,构建完成了聚类树状图。

1.2 层次聚类的两种方法

层次聚类有两种主要方法:凝聚的层次聚类和分裂的层次聚类。它们之间的区别在于起始阶段和合并过程的不同。

1.2.1 凝聚的层次聚类

  • 起始阶段:凝聚的层次聚类从每个数据点作为一个单独的聚类开始,与之前描述的一样。

  • 合并过程:在凝聚的层次聚类中,合并过程是从下往上进行的。具体来说,算法首先计算所有数据点两两之间的距离或相似度,然后将最相似的两个聚类合并为一个新的聚类。这个过程重复进行,直到只剩下一个大的聚类。

  • 特点:凝聚的层次聚类的特点是从细粒度到粗粒度的合并,最终形成一个聚类树状图。

1.2.2 分裂的层次聚类

  • 起始阶段:分裂的层次聚类从一个包含所有数据点的大聚类开始。

  • 合并过程:在分裂的层次聚类中,合并过程是从上往下进行的。具体来说,算法首先将大聚类划分为两个子聚类,然后逐步将这些子聚类继续分裂,直到每个数据点都成为一个单独的聚类。

  • 特点:分裂的层次聚类的特点是从粗粒度到细粒度的划分,最终形成一个聚类树状图。

1.3 层次聚类的应用场景和优势

层次聚类在许多领域都有广泛的应用,包括生物学、社交网络分析、市场细分等。它的优势包括:

  • 层次结构可视化:聚类树状图能够直观地展示数据点之间的相似性和层次结构,有助于数据分析和解释。

  • 不需要预先指定聚类数量:与K均值聚类等方法不同,层次聚类不需要预先指定聚类数量,因此更适用于不确定聚类数量的情况。

  • 灵活性:凝聚的层次聚类和分裂的层次聚类提供了不同的合并方式,允许根据数据的特点选择合适的方法。

2. 层次聚类的关键概念

在层次聚类中,有一些关键概念和要点,它们对于理解和应用层次聚类非常重要。本节将详细介绍这些关键概念,包括距离或相似度度量、链接标准以及聚类树状图,并提供数学公式来进一步说明。

2.1 距离或相似度度量

距离或相似度度量是层次聚类中的关键步骤,它用于衡量数据点之间的相似性或距离。不同的度量方法会导致不同的聚类结果,因此选择合适的度量方法至关重要。

当我们讨论距离或相似度度量时,让我们考虑一个具体的例子。假设我们有两个数据点 X X X Y Y Y,它们表示不同城市的温度和降水情况,如下所示:

  • 城市 X X X 的温度: 25 , 30 , 28 , 35 , 20 25, 30, 28, 35, 20 25,30,28,35,20

  • 城市 Y Y Y 的温度: 22 , 28 , 26 , 32 , 18 22, 28, 26, 32, 18 22,28,26,32,18

  • 城市 X X X 的降水量: 5 , 10 , 8 , 2 , 15 5, 10, 8, 2, 15 5,10,8,2,15

  • 城市 Y Y Y 的降水量: 8 , 12 , 10 , 4 , 20 8, 12, 10, 4, 20 8,12,10,4,20

2.1.1 欧氏距离(Euclidean Distance)

欧氏距离用于衡量两个数据点之间的直线距离,通常用于连续型数据。对于两个数据点 X X X Y Y Y,其欧氏距离计算如下:

欧氏距离 ( X , Y ) = ∑ i = 1 n ( X i − Y i ) 2 \text{欧氏距离}(X, Y) = \sqrt{\sum_{i=1}^{n}(X_i - Y_i)^2} 欧氏距离(X,Y)=i=1n(XiYi)2

其中, X i X_i Xi Y i Y_i Yi 分别表示两个数据点在第 i i i 个维度上的取值。

将2中的例子数据,进行代入:

欧氏距离 ( X , Y ) = ( 25 − 22 ) 2 + ( 30 − 28 ) 2 + ( 28 − 26 ) 2 + ( 35 − 32 ) 2 + ( 20 − 18 ) 2 \text{欧氏距离}(X, Y) = \sqrt{(25-22)^2 + (30-28)^2 + (28-26)^2 + (35-32)^2 + (20-18)^2} 欧氏距离(X,Y)=(2522)2+(3028)2+(2826)2+(3532)2+(2018)2

计算结果即为欧氏距离。

2.1.2 曼哈顿距离(Manhattan Distance)

曼哈顿距离用于衡量两个数据点之间的城市街区距离,适用于离散型数据或具有明显分箱结构的数据。对于两个数据点 X X X Y Y Y,其曼哈顿距离计算如下:

曼哈顿距离 ( X , Y ) = ∑ i = 1 n ∣ X i − Y i ∣ \text{曼哈顿距离}(X, Y) = \sum_{i=1}^{n}|X_i - Y_i| 曼哈顿距离(X,Y)=i=1nXiYi

将2中的例子数据,进行代入:

曼哈顿距离 ( X , Y ) = ∣ 25 − 22 ∣ + ∣ 30 − 28 ∣ + ∣ 28 − 26 ∣ + ∣ 35 − 32 ∣ + ∣ 20 − 18 ∣ \text{曼哈顿距离}(X, Y) = |25-22| + |30-28| + |28-26| + |35-32| + |20-18| 曼哈顿距离(X,Y)=∣2522∣+∣3028∣+∣2826∣+∣3532∣+∣2018∣

计算结果即为曼哈顿距离。

2.1.3 余弦相似度(Cosine Similarity)

余弦相似度用于衡量两个向量之间的夹角余弦值,通常用于文本数据或高维数据。对于两个向量 X X X Y Y Y,其余弦相似度计算如下:

余弦相似度 ( X , Y ) = X ⋅ Y ∥ X ∥ ⋅ ∥ Y ∥ \text{余弦相似度}(X, Y) = \frac{X \cdot Y}{\|X\| \cdot \|Y\|} 余弦相似度(X,Y)=XYXY

其中, X ⋅ Y X \cdot Y XY 表示向量 X X X Y Y Y 的点积, ∥ X ∥ \|X\| X ∥ Y ∥ \|Y\| Y 分别表示向量 X X X Y Y Y 的范数。

将2中的例子数据,进行代入:

T X = [ 25 , 30 , 28 , 35 , 20 ] T_X = [25, 30, 28, 35, 20] TX=[25,30,28,35,20]
T Y = [ 22 , 28 , 26 , 32 , 18 ] T_Y = [22, 28, 26, 32, 18] TY=[22,28,26,32,18]

计算余弦相似度的分子:

T X ⋅ T Y = 25 ⋅ 22 + 30 ⋅ 28 + 28 ⋅ 26 + 35 ⋅ 32 + 20 ⋅ 18 T_X \cdot T_Y = 25 \cdot 22 + 30 \cdot 28 + 28 \cdot 26 + 35 \cdot 32 + 20 \cdot 18 TXTY=2522+3028+2826+3532+2018

计算向量范数:

∥ T X ∥ = 2 5 2 + 3 0 2 + 2 8 2 + 3 5 2 + 2 0 2 \|T_X\| = \sqrt{25^2 + 30^2 + 28^2 + 35^2 + 20^2} TX=252+302+282+352+202
∥ T Y ∥ = 2 2 2 + 2 8 2 + 2 6 2 + 3 2 2 + 1 8 2 \|T_Y\| = \sqrt{22^2 + 28^2 + 26^2 + 32^2 + 18^2} TY=222+282+262+322+182

然后计算余弦相似度:

余弦相似度 ( X , Y ) = T X ⋅ T Y ∥ T X ∥ ⋅ ∥ T Y ∥ \text{余弦相似度}(X, Y) = \frac{T_X \cdot T_Y}{\|T_X\| \cdot \|T_Y\|} 余弦相似度(X,Y)=TXTYTXTY

计算结果即为余弦相似度。

2.1.4 相关系数(Correlation Coefficient)

相关系数用于衡量两个变量之间的线性相关性,可用于衡量数据点之间的关联程度。常见的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。

将2中的例子数据,进行代入:

首先计算均值:

X ˉ = 25 + 30 + 28 + 35 + 20 5 = 27.6 \bar{X} = \frac{25 + 30 + 28 + 35 + 20}{5} = 27.6 Xˉ=525+30+28+35+20=27.6
Y ˉ = 22 + 28 + 26 + 32 + 18 5 = 25.2 \bar{Y} = \frac{22 + 28 + 26 + 32 + 18}{5} = 25.2 Yˉ=522+28+26+32+18=25.2

然后计算皮尔逊相关系数的分子和分母:

分子:

∑ i = 1 5 ( X i − X ˉ ) ( Y i − Y ˉ ) = ( 25 − 27.6 ) ( 22 − 25.2 ) + ( 30 − 27.6 ) ( 28 − 25.2 ) + ( 28 − 27.6 ) ( 26 − 25.2 ) + ( 35 − 27.6 ) ( 32 − 25.2 ) + ( 20 − 27.6 ) ( 18 − 25.2 ) \sum_{i=1}^{5}(X_i - \bar{X})(Y_i - \bar{Y}) = (25-27.6)(22-25.2) + (30-27.6)(28-25.2) + (28-27.6)(26-25.2) + (35-27.6)(32-25.2) + (20-27.6)(18-25.2) i=15(XiXˉ)(YiYˉ)=(2527.6)(2225.2)+(3027.6)(2825.2)+(2827.6)(2625.2)+(3527.6)(3225.2)+(2027.6)(1825.2)

分母:

∑ i = 1 5 ( X i − X ˉ ) 2 ∑ i = 1 5 ( Y i − Y ˉ ) 2 = ( 25 − 27.6 ) 2 + ( 30 − 27.6 ) 2 + ( 28 − 27.6 ) 2 + ( 35 − 27.6 ) 2 + ( 20 − 27.6 ) 2 × ( 22 − 25.2 ) 2 + ( 28 − 25.2 ) 2 + ( 26 − 25.2 ) 2 + ( 32 − 25.2 ) 2 + ( 18 − 25.2 ) 2 \sqrt{\sum_{i=1}^{5}(X_i - \bar{X})^2 \sum_{i=1}^{5}(Y_i - \bar{Y})^2} = \sqrt{(25-27.6)^2 + (30-27.6)^2 + (28-27.6)^2 + (35-27.6)^2 + (20-27.6)^2} \times \sqrt{(22-25.2)^2 + (28-25.2)^2 + (26-25.2)^2 + (32-25.2)^2 + (18-25.2)^2} i=15(XiXˉ)2i=15(YiYˉ)2 =(2527.6)2+(3027.6)2+(2827.6)2+(3527.6)2+(2027.6)2 ×(2225.2)2+(2825.2)2+(2625.2)2+(3225.2)2+(1825.2)2

最后计算皮尔逊相关系数:

皮尔逊相关系数 ( X , Y ) = ∑ i = 1 5 ( X i − X ˉ ) ( Y i − Y ˉ ) ∑ i = 1 5 ( X i − X ˉ ) 2 ∑ i = 1 5 ( Y i − Y ˉ ) 2 \text{皮尔逊相关系数}(X, Y) = \frac{\sum_{i=1}^{5}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{5}(X_i - \bar{X})^2 \sum_{i=1}^{5}(Y_i - \bar{Y})^2}} 皮尔逊相关系数(X,Y)=i=15(XiXˉ)2i=15(YiYˉ)2 i=15(XiXˉ)(YiYˉ)

计算结果即为皮尔逊相关系数。

2.1.5 Jaccard相似度(Jaccard Similarity)

Jaccard相似度用于衡量两个集合的交集与并集的比例,通常用于集合数据的相似度计算。对于两个集合 A A A B B B,其Jaccard相似度计算如下:

Jaccard相似度 ( A , B ) = ∣ A ∩ B ∣ ∣ A ∪ B ∣ \text{Jaccard相似度}(A, B) = \frac{|A \cap B|}{|A \cup B|} Jaccard相似度(A,B)=ABAB

将2中的例子数据,进行代入:

降水情况集合 A A A B B B 如下:

A = { 5 , 10 , 8 , 2 , 15 } A = \{5, 10, 8, 2, 15\} A={5,10,8,2,15}
B = { 8 , 12 , 10 , 4 , 20 } B = \{8, 12, 10, 4, 20\} B={8,12,10,4,20}

计算交集大小 ∣ A ∩ B ∣ |A \cap B| AB 和并集大小 ∣ A ∪ B ∣ |A \cup B| AB

∣ A ∩ B ∣ = ∣ 8 , 10 ∣ = 2 |A \cap B| = |{8, 10} | = 2 AB=8,10=2
∣ A ∪ B ∣ = ∣ 2 , 4 , 5 , 8 , 10 , 12 , 15 , 20 ∣ = 8 |A \cup B| = |{2, 4, 5, 8, 10, 12, 15, 20}| = 8 AB=2,4,5,8,10,12,15,20=8

然后计算Jaccard相似度:

Jaccard相似度 ( A , B ) = ∣ A ∩ B ∣ ∣ A ∪ B ∣ = 2 8 = 0.25 \text{Jaccard相似度}(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{2}{8} = 0.25 Jaccard相似度(A,B)=ABAB=82=0.25

计算结果即为Jaccard相似度。

选择合适的距离或相似度度量方法取决于数据的性质和分布。在层次聚类中,这些度量方法用于计算聚类过程中两个聚类之间的距离,从而确定哪两个聚类应该合并或划分。

2.2 链接标准

在层次聚类中,链接标准决定了如何度量两个聚类之间的相似度或距离,从而影响聚类的结果。不同的链接标准会导致不同形状和大小的聚类。以下是常见的链接标准以及它们的解释:

2.2.1 最短链接(Single Linkage)

最短链接标准度量两个聚类中最相似数据点之间的距离。简而言之,它考虑了两个聚类中最接近的数据点之间的距离。这意味着两个聚类之间的距离取决于它们中最接近的数据点之间的距离。

2.2.2 最长链接(Complete Linkage)

最长链接标准度量两个聚类中最不相似数据点之间的距离。与最短链接相反,它考虑了两个聚类中最不相似的数据点之间的距离。这种方法倾向于生成具有较大直径(即最远数据点之间距离较大)的聚类。

2.2.3 平均链接(Average Linkage)

平均链接标准度量两个聚类中所有数据点之间的平均距离或相似度。它计算了两个聚类中每对数据点之间的距离,并求取平均值。这种方法通常是一种平衡的选择,适用于多种情况,因为它不过分强调最远或最近的数据点。

2.2.4 Ward方法

Ward方法是一种基于方差的链接标准。它度量合并两个聚类后整个聚类的方差增加量。具体来说,它衡量了合并前后每个聚类中数据点的方差,并计算合并后的方差与合并前的方差之差。Ward方法倾向于生成方差增加较小的聚类,因此对异常值相对不敏感。

选择合适的链接标准取决于数据的性质和聚类的目标。不同的链接标准可能会导致不同形状和大小的聚类,因此需要根据具体情况来选择,以获得符合问题要求的聚类结果。

这些链接标准的选择会影响层次聚类的输出,因此在进行层次聚类时,需要根据数据的特点和聚类的目标来谨慎选择链接标准。

2.3 聚类树状图(Dendrogram)

聚类树状图是层次聚类的可视化表示,它展示了数据点的层次聚类过程。树状图的构建过程通过链接标准和距离度量方法来确定。以下是聚类树状图的主要特点:

  • 节点表示聚类:树状图的每个节点代表一个聚类,叶子节点代表单个数据点。

  • 树状结构:树状图的结构呈树状,根节点代表包含所有数据点的聚类,叶子节点代表最终的单个聚类。

  • 纵轴表示相似度或距离:树状图的纵轴通常表示聚类之间的相似度或距离。从底部到顶部,相似度逐渐减小。

聚类树状图的绘制可以帮助我们理解数据点之间的关系和聚类的层次结构。通过树状图,我们可以选择合适的聚类层次,从而获得不同粒度的聚类结果。

3. Python实现层次聚类

在本节中,我们将深入研究如何在Python中实现层次聚类。层次聚类的实现涉及数据准备、距离度量、链接标准和树状图可视化等关键步骤。

3.1 数据准备和预处理

在进行层次聚类之前,需要对数据进行准备和预处理,以确保数据适合聚类分析。以下是常见的数据准备步骤:

  • 数据导入:首先,导入需要进行层次聚类的数据集。可以使用Python中的pandas库来加载数据。
import pandas as pd

# 读取数据
data = pd.read_csv('your_data.csv')
  • 特征选择:根据问题的需求,选择需要用于聚类的特征。有时候,不同特征的重要性不同,需要进行特征选择。
# 选择特征列
selected_features = data[['feature1', 'feature2', 'feature3']]
  • 数据标准化:如果不同特征的尺度不同,需要进行数据标准化,以确保各个特征对聚类的影响权重相等。
from sklearn.preprocessing import StandardScaler

# 标准化数据
scaler = StandardScaler()
scaled_data = scaler.fit_transform(selected_features)

3.2 使用Scipy进行凝聚的层次聚类

Scipy库提供了一个方便且功能强大的层次聚类工具,可以轻松实现凝聚的层次聚类。以下是实施层次聚类的关键步骤:

  • 计算距离矩阵:首先,计算数据点之间的距离或相似度矩阵。可以使用Scipy的距离函数来计算不同距离度量之间的距离。
from scipy.spatial.distance import pdist

# 计算距离矩阵
distance_matrix = pdist(scaled_data, metric='euclidean')
  • 进行层次聚类:使用Scipy的linkage函数进行层次聚类,该函数接受距离矩阵和链接标准作为参数,并返回聚类结果的链接矩阵。
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

# 进行层次聚类
linkage_matrix = linkage(distance_matrix, method='ward')

# 绘制聚类树状图
dendrogram(linkage_matrix, orientation='top')
plt.xlabel('样本索引')
plt.ylabel('距离')
plt.title('层次聚类树状图')
plt.show()

3.3 使用Sklearn进行层次聚类

Sklearn库也提供了层次聚类的实现,它与其他Sklearn的机器学习工具集成良好,适用于更复杂的数据分析任务。以下是实施层次聚类的关键步骤:

  • 选择模型:在Sklearn中,可以选择使用AgglomerativeClustering类进行凝聚的层次聚类,或使用FeatureAgglomeration类进行特征聚类。
from sklearn.cluster import AgglomerativeClustering

# 选择模型
model = AgglomerativeClustering(n_clusters=3, linkage='ward')
  • 拟合模型:使用选定的模型和参数来拟合数据,得到聚类结果。
# 拟合模型
clusters = model.fit_predict(scaled_data)
  • 可视化聚类结果:可以使用Matplotlib等库来可视化聚类结果,例如绘制散点图或聚类树状图,以便更好地理解数据的聚类结构。
# 绘制散点图
plt.scatter(scaled_data[:, 0], scaled_data[:, 1], c=clusters, cmap='viridis')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.title('层次聚类结果')
plt.show()

4. 聚类结果的评估和解释

在层次聚类中,评估和解释聚类结果是非常重要的,它有助于我们理解数据的结构以及簇的含义。本节将深入讨论如何在层次聚类背景下评估和解释聚类结果。

为方便大家进行复现,此处给出一个简单的层次聚类代码:

from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt


# 设置中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文显示的字体,SimHei 是宋体的黑体版本
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

# 创建示例数据集
X, y = make_blobs(n_samples=300, centers=3, random_state=12)

# 初始化层次聚类模型
model = AgglomerativeClustering(n_clusters=3, linkage='ward')

# 拟合数据
model.fit(X)

# 绘制聚类结果
plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap='viridis')
plt.title("层次聚类结果")
plt.xlabel("特征1")
plt.ylabel("特征2")
plt.show()

4.1 评估聚类效果

4.1.1 内部指标

内部指标用于衡量聚类的质量,而无需与外部信息进行比较。在层次聚类中,以下是一些常用的内部指标:

  • 轮廓系数(Silhouette Score):轮廓系数考虑了每个数据点与其所属簇内其他数据点的相似度和与最近的相邻簇的数据点的相似度。轮廓系数的取值范围在-1到1之间,较高的轮廓系数表示簇内数据点越相似,不同簇之间越分离。
from sklearn.metrics import silhouette_score

# 计算轮廓系数
silhouette_avg = silhouette_score(X, model.labels_)
print("轮廓系数:", silhouette_avg)
  • 戴维斯-布尔丁指数(Davies-Bouldin Index):戴维斯-布尔丁指数考虑了簇内数据点的紧密度和簇间数据点的分离度。较低的戴维斯-布尔丁指数表示聚类效果越好。
from sklearn.metrics import davies_bouldin_score

# 计算戴维斯-布尔丁指数
db_index = davies_bouldin_score(X, model.labels_)
print("戴维斯-布尔丁指数:", db_index)

4.1.2 外部指标

外部指标需要与已知的外部信息(如真实标签)进行比较,以评估聚类的准确性。在层次聚类中,由于通常没有真实标签,外部指标可能不太适用。

4.2 解释聚类结果

在层次聚类中,解释聚类结果是为了理解数据的结构和簇的含义。以下是一些解释聚类结果的方法:

  • 簇的特征分析:分析每个簇的特征和统计信息,了解每个簇代表的数据子集的性质。可以使用平均值、方差等统计指标来描述簇内数据点的特点。
# 获取每个簇的数据点
clusters = {}
for i, label in enumerate(model.labels_):
    if label not in clusters:
        clusters[label] = []
    clusters[label].append(X[i])

# 分析每个簇的特征
for label, data_points in clusters.items():
    mean_feature1 = np.mean([point[0] for point in data_points])
    mean_feature2 = np.mean([point[1] for point in data_points])
    print(f"簇 {label}: 平均特征1 = {mean_feature1}, 平均特征2 = {mean_feature2}")
  • 簇的命名和标签:根据簇内数据点的特征,为每个簇命名或分配标签,以便更好地理解其含义。
# 假设根据特征进行命名或标签分配
cluster_names = {0: "簇A", 1: "簇B", 2: "簇C"}

# 输出簇的命名或标签
for label, name in cluster_names.items():
    print(f"簇 {label}: {name}")
  • 关联分析:分析不同簇之间的关联和相互影响,探索数据中的模式和关联关系。
import numpy as np

# 假设有3个簇,每个簇的数据点存储在不同的列表中
cluster1_data = [X[i] for i in range(len(X)) if model.labels_[i] == 0]
cluster2_data = [X[i] for i in range(len(X)) if model.labels_[i] == 1]
cluster3_data = [X[i] for i in range(len(X)) if model.labels_[i] == 2]

# 获取每个簇内数据点的数量
num_samples_cluster1 = len(cluster1_data)
num_samples_cluster2 = len(cluster2_data)
num_samples_cluster3 = len(cluster3_data)

# 计算不同簇之间的相关性矩阵(使用皮尔逊相关系数)
correlation_matrix = np.corrcoef([np.array(cluster1_data).flatten()[:min(num_samples_cluster1, num_samples_cluster2, num_samples_cluster3)],
                                  np.array(cluster2_data).flatten()[:min(num_samples_cluster1, num_samples_cluster2, num_samples_cluster3)],
                                  np.array(cluster3_data).flatten()[:min(num_samples_cluster1, num_samples_cluster2, num_samples_cluster3)]])

# 绘制热图
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', xticklabels=['簇1', '簇2', '簇3'], yticklabels=['簇1', '簇2', '簇3'])
plt.title("不同簇之间的关联性热图")
plt.show()

相关性值越接近1,表示不同簇之间的相似性越高,可能具有相似的数据模式或关联关系。在数据分析中,这可以帮助我们理解不同簇之间的关系以及它们之间的相似性程度。

5. 实战案例

5.1 场景描述

场景:分析社交媒体用户的行为以识别用户群体

在这个场景中,你是一个社交媒体平台的数据分析师,你有一份包含用户的行为数据,例如发布的帖子数量、评论数量、点赞数量、粉丝数量等信息。你的任务是使用层次聚类来识别具有相似行为模式的用户群体,以便更好地个性化推荐内容和广告。

5.2 实现代码

下方是一个简单的例子,供大家参考:

import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import AgglomerativeClustering
import scipy.cluster.hierarchy as sch
import matplotlib.pyplot as plt

# 步骤 1:数据准备
# 构建测试数据集
data = pd.DataFrame({
    '用户ID': range(1, 21),
    '帖子数量': [50, 10, 300, 20, 150, 80, 70, 40, 200, 250, 120, 90, 30, 160, 60, 190, 220, 260, 70, 110],
    '评论数量': [30, 5, 150, 10, 80, 50, 40, 20, 120, 130, 60, 45, 15, 90, 35, 110, 130, 150, 40, 70],
    '点赞数量': [100, 20, 500, 30, 250, 120, 110, 60, 320, 400, 190, 150, 40, 280, 80, 280, 350, 420, 100, 180],
    '粉丝数量': [5000, 200, 10000, 300, 8000, 3500, 2800, 1200, 9000, 10500, 5200, 4000, 1300, 7200, 2200, 9800, 11500, 12500, 2800, 4600]
})

# 步骤 2:特征标准化
# 标准化特征
scaler = StandardScaler()
X_scaled = scaler.fit_transform(data.iloc[:, 1:])

# 步骤 3:层次聚类
# 初始化层次聚类模型
model = AgglomerativeClustering(n_clusters=3)

# 进行聚类
clusters = model.fit_predict(X_scaled)

# 将聚类结果添加到数据集中
data['Cluster'] = clusters

# 步骤 4:绘制层次聚类的树状图
# 使用Ward方法计算层次聚类的树状图
dendrogram = sch.dendrogram(sch.linkage(X_scaled, method='ward'))
plt.title('层次聚类的树状图')
plt.xlabel('用户')
plt.ylabel('欧氏距离')
plt.show()

运行上述代码后,生成结果如下:

5.1

上述聚类的结果是基于社交媒体用户的行为数据进行的,分成了3个不同的簇。接下来,我们将解释这些聚类结果以及如何将它们应用到实际中。

聚类结果解读:

在这个场景中,我们使用了层次聚类算法将社交媒体用户分成了3个不同的簇。这些簇代表了具有相似行为模式的用户群体。以下是对每个簇的一些可能解释:

  1. 簇1 - 高活跃度用户:这个簇包含了高活跃度的用户,他们发布了大量帖子、评论和点赞,同时拥有大量粉丝。这些用户可能是社交媒体上的明星或领域专家。

  2. 簇2 - 中等活跃度用户:这个簇包含了中等活跃度的用户,他们在社交媒体上的活动较为平均,不过也有一定数量的粉丝。这些用户可能是普通社交媒体用户,对各种话题都有兴趣。

  3. 簇3 - 低活跃度用户:这个簇包含了低活跃度的用户,他们在社交媒体上的活动相对较少,帖子、评论和点赞数量都较低。这些用户可能是偶尔上社交媒体的人,或者对特定话题不太感兴趣。

应用到实际中:

将这些聚类结果应用到实际中可以有多种方式:

  1. 个性化内容推荐:社交媒体平台可以根据用户所属的簇,为他们推荐与他们兴趣相关的内容。例如,对于高活跃度用户,可以推荐更多深度内容或专业领域的话题,而对于低活跃度用户,可以推荐更容易消化的娱乐内容。

  2. 广告定向:广告商可以根据用户所属的簇来精确定向广告。例如,对于高活跃度用户,可以展示与其专业领域相关的广告,而对于中等活跃度用户,可以展示更广泛的产品广告。

  3. 社交媒体策略优化:社交媒体平台可以根据不同用户群体的特点来优化其运营策略。例如,可以更多地与高活跃度用户互动,以增加他们的参与度,或者针对低活跃度用户制定增加互动的策略。

总之,聚类结果可以帮助社交媒体平台更好地理解和服务不同类型的用户群体,从而提供更个性化、有针对性的用户体验和服务。这可以提高用户满意度,增加平台的活跃度,同时也有助于广告商更精确地定位他们的目标受众。

写在最后

层次聚类作为一种强大的聚类方法,具有丰富的理论基础和广泛的应用场景。本文详细介绍了层次聚类的原理和实现方法,希望读者能够通过学习掌握这一有用的数据分析工具。层次聚类不仅能够帮助我们发现数据中的模式,还能为数据分析提供直观的可视化支持。在未来的数据分析项目中,层次聚类将是您的得力助手。

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

theskylife

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值