Bloomberg彭博终端函数和EXCEL插件

彭博终端内置的各种函数极其强大,能够很好地帮助我们做数据分析,在这里介绍终端和Excel插件的几个常用函数。

一、终端常用函数

1、FLDS<GO>:查找各种FEILDS,全称应该是FEILD SEARCH

2、HELP*2 :询问客服,回复速度和质量很高,等待时间一般不超过五分钟

这两个函数(尤其是第二个)基本上可以解决终端所有的使用问题,因此,其他的函数不赘述了,想了解其他函数,可以参考yale的彭博指引,查阅Key Functions & Cheat Sheets中的各类文档。

 

二、EXCEL插件常用函数

常用的有三个:BDP (Bloomberg Data Point)、BDH (Bloomberg Data History)、BDS (Bloomberg Data Set),分别对应最新时刻数据、历史/时序数据、大数据集(bulk data)。

在使用上述函数时,需要指名证券代码和字段名称(= BDP(Security, Feild)),其中证券代码按照(Ticker) (Market Sector)的形式传入,例如:TGT Equity。指标名称可以用Excel插件的Find Fields查找到。

117f6c237908fd950ef5861fe42677c0.png

另外,如果需要知道字段的释义,可以用BFieldInfo(=BFieldInfo(Field,"DES","LANG=ZH"))

最后,如果不习惯使用函数,可以使用Spreadsheet Builder,选择你想要的字段,然后它可以帮助你自动生成函数。

c9e80e5255f2a59211e14ac28ca698df.png

 

 

 

 

<think>好的,我需要回答用户关于如何通过彭博终端下载面板数据的问题。首先,我需要回忆彭博终端的基本操作面板数据下载的步骤。记得彭博终端有强大的数据提取功能,但具体步骤可能涉及多个菜单命令。 用户提到面板数据,通常是指包含多个实体(如公司、国家)多个时间点的数据集。彭博终端可能需要使用特定的函数或工具来提取这类数据。例如,用户可能需要使用Excel插件或者Bloomberg的公式来批量下载数据。 接下来,我需要确保步骤清晰,分点说明。可能需要先登录彭博终端,然后打开Excel插件,使用BDP或BDH函数获取数据。另外,还要提到数据导出处理的注意事项,比如数据清洗,引用用户提供的引用[1]中的内容。 还要考虑用户可能的后续问题,比如数据格式调整或处理缺失值,可以引用引用[2]中的绘图代码作为数据处理后的可视化例子。此外,添加相关问题,帮助用户进一步探索,比如优化数据下载的方法或处理常见错误。 最后,检查是否需要提到其他方法,比如使用彭博终端的命令行工具或API,但根据用户提供的引用[3]中提到的软件安装方式,可能用户对技术操作有一定基础,可以简要提及高级方法。 确保回答符合系统级指令:使用正确的中文,LaTeX格式无误,添加引用标识,并生成相关问题。同时,结构要清晰,逐步引导用户完成操作。</think>### 通过彭博终端下载面板数据的方法 彭博终端Bloomberg Terminal)提供多种方式下载面板数据,以下是两种常用方法: --- #### **方法1:使用Excel插件Bloomberg Excel Add-In)** 1. **登录彭博终端** 确保已安装并登录彭博终端,并在Excel中启用Bloomberg插件。 2. **准备数据模板** 在Excel中创建表格,包含目标数据的标识符(如股票代码、经济指标代码)时间范围。例如: ``` A列:公司代码(如AAPL US Equity) B列:开始日期(如2020-01-01) C列:结束日期(如2023-12-31) ``` 3. **使用BDP/BDH函数提取数据** - **单点数据**:使用`=BDP("AAPL US Equity", "PX_LAST")`获取苹果公司最新股价[^1]。 - **时间序列数据**:使用`=BDH("AAPL US Equity", "PX_LAST", B1, B2)`提取指定日期范围的股价数据,其中`B1``B2`为日期单元格。 4. **批量填充与导出** 拖动填充公式至所有行,完成后将数据复制到其他工具(如Python)进行清洗分析[^1]。 --- #### **方法2:通过彭博界面直接导出** 1. **进入数据导出功能** 在彭博终端输入命令`DATA`,进入数据下载界面。 2. **设置筛选条件** - 选择数据类型(如股票、债券、宏观经济指标)。 - 输入实体代码(多个代码用逗号分隔)。 - 设置时间范围、频率(日/月/季度)字段(如收盘价、成交量)。 3. **导出数据** 点击“导出”生成文件(支持Excel、CSV等格式),保存后检查数据完整性,处理缺失值或异常值。 --- #### **注意事项** 1. **权限与订阅**:部分数据需特定订阅权限,需确认账户权限。 2. **数据清洗**:导出后需处理缺失值、重复项或格式问题,例如使用Python的Pandas库进行清洗。 3. **代码效率**:批量下载大量数据时,建议分批次操作以避免系统超时。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值