【图像超分辨率】End-to-End Super-Resolution for Remote-Sensing Images Using an Improved Multi-Scale Residual

提出了一种新的金字塔型多尺度残差网络(PMSRN),利用分层残差样连接和扩张卷积形成多尺度扩张残差块(MSDRB)。MSDRB增强了检测上下文信息的能力,并通过分层特征融合结构融合分层特征。为了更有效地整合不同尺度的图像特征,在MSDRBs中引入分层残差类连接(即Res2Net[18]),实现更细化的多尺度特征表示。为了尽可能地解决网络特征遗忘和利用不足的问题,将每个MSDRB层的输出作为分层特征融合结构(HFFS)的输入。最后,在重建结构中加入全局和局部特征的互补块,以缓解有用的原始信息被忽略的问题。

本研究的贡献如下。

  • 提出了一种新的MSDRB。该模块以更细的粒度表达多尺度特征,增加了各网络层的接受场,增强了自适应检测图像特征的能力。
  • 为了融合浅层和深层特征,提出了一种新的重建CB。该模块可以充分利用原LR图像中的有用信息,防止网络不稳定,提高网络鲁棒性和图像重建效果。
  • 由于所提出的PMSRN的参数数仅为EDSR的43.33%,且该模块具有独立性,容易迁移到其他网络中进行学习,因此比其他网络更容易训练。

在这里插入图片描述
图1.金字塔多尺度残差网络(PMSRN)模型架构。金字塔型多尺度残差网络(PMSRN)模型架构。网络模型包括两个部分:特征提取和重建。特征提取由分层特征融合结构(HFFS)和8个多尺度扩展残差块(MSDRB)进行,重建主要涉及互补块(CB)。

在训练过程中,

  • 首先,利用RGB颜色模型对公共图像中包含的所有波段进行转换,得到HR图像。
  • 第二,将HR通过Bicubic下采样操作得到的LR作为PMSRN的输入。
  • 第三,PMSRN使用多个MSDRB来学习LR和HR之间的特征映射关系。
  • 此外,随后通过HFFS对全局和局部特征信息进行组合。
  • 最后,CB对SR图像进行重建。

该方法与原来的MSRN主要有两个方面的不同。
在特征提取部分,MSDRB取代了多尺度残差模块。
在重建部分,增加了CB模块。

在这里插入图片描述
图2.MSDRB结构,四层分为三个分支。MSDRB结构,四层分为三个分支。分支1包含分层残差类连接(即Res2Net)残差块、激活函数(即整流线性单元,ReLU)和并联操作。分支2和3分别包含扩张率d为2和3的扩张卷积;ReLU;以及并联操作。分支S3、P3、Q3的输出经过协整和1×1卷积后输出为S′。最后,S′用Bn-1进行特征加法。

为了使网络具有更强的多尺度特征提取能力,在PMSRN中设计了一个MSDRB(图2)。MSDRB由多尺度融合、多级残差学习和多扩张率扩张卷积组三部分组成。

多尺度特征融合:图像的多尺度性质类似于人眼观察物体。当与物体的距离不同时,感知到的特征是不同的;也就是说,视野中的同一物体,图像的大小和尺度是不同的,所以特征也是不同的[19]。

在第一层网络结构中,输入Bn-1经过支路1的Res2Net残块,被激活函数整流线性单元(ReLU,用σ表示)激活,输出S1;输入Bn-1经过支路2的扩张卷积(扩张率d=2),被ReLU激活函数激活,输出P1;输入Bn-1经过支路3的扩张卷积(扩张率d=3),被ReLU激活函数激活,输出Q1。结构输出S1、P1、Q1可表示如下。
在这里插入图片描述
在二层网络结构中,输入端S1、P1、Q1通过并联操作输出[S1,P1,Q1]。[S1,P1,Q1]经过支路1的Res2Net残块,被ReLU激活函数激活,输出S2。然后,[S1,P1,Q1]经过分支2的扩张卷积(扩张率d=2),被激活函数ReLU激活,输出P2。此外,[S1,P1,Q1]经过分支3的扩张卷积(扩张率d=3),被激活函数ReLU激活,输出Q2。第二层网络结构的输出S2、P2、Q2可表示如下。
在这里插入图片描述
在第三层网络结构中,分支1的输入S2和P2通过连通操作后输出[S2,P2],由ReLU激活函数激活,输出S3。分支2的输入S2和Q2通过并联操作后输出[S2,Q2],由ReLU激活函数激活,输出P3。并联操作后分支3的输入Q2和P2输出[Q2,P2],由ReLU激活函数激活,输出Q3。第三层的网络结构输出S3、P3和Q3可表示为:。
在这里插入图片描述
在第四层网络结构中,输入端S3、P3、Q3进行并联运算,输出端为[S3,P3,Q3],经1×1标准卷积核滤波后输出S′。第四层的输出S′可表示为:。
在这里插入图片描述
在(3)-(12)中,w和b分别代表权重和偏置;上标代表层数;下标1×1和3×3代表卷积核的大小;下标Res2Net代表卷积类型为分层残差样连接;下标d代表扩张率为d的卷积。
假设MSDRB输入Bn-1的通道数为n_feats;那么,内部第一层、第二层和第三层的输出通道数分别为n_feats、3×n_feats和6×n_feats。在第四层,基于特征图连通的输出通道数为18×n_feats,用1×1卷积核再次将特征图通道数减少到n_feats。

多级残差学习:在单个MSDRB内部,Res2Net表示多尺度的特征,层次更加细化,增加了每个网络层的接受场范围。具体来说,该模块用卷积核组代替了单个3×3卷积核。同时,不同的卷积核可以以层次残差的形式连接起来(图3b)。
在这里插入图片描述
图3.ResNet和Res2Net结构比较。ResNet和Res2Net结构的比较。在Res2Net内部,单个3×3卷积核被卷积核组所取代。(a) ResNet模块和(b) Res2Net模块。
Res2Net的内部操作的定义如下:
在这里插入图片描述
输入的图像特征经1×1标准卷积运算过滤后,复制成四条特征信息,即X1、X2、X3、X4。在Res2Net中,得到不同接受场的输出。例如,Y2、Y3和Y4分别得到标准卷积3×3、5×5和7×7的接受场。最后,将4个输出进行融合,经过1×1的卷积运算后,输出通道数减少到输入通道数。这种拆分和融合的策略使得卷积能够更高效地处理特征。需要注意的是,MSRN比ResNet、密集残差网络[20]和inception[21]具有更强的特征提取能力[15]。
在MSDRB外,加上S′和Bn-1的相应元素,输出Bn,其表示为:。
在这里插入图片描述
多扩张率扩张卷积组:虽然该组提高了接受场,减少了计算量,但分辨率损失最小。扩张卷积用于设置不同的d扩张率d以获得不同的接受场。在卷积核中加入d - 1个零,不会增加计算量。图4显示了不同d值下的扩张卷积核。
在这里插入图片描述
图4.扩张卷积的示意图。扩张卷积的示意图。红色像素代表非零权值,白色像素代表零权值,红色像素组成的矩阵为接受场的大小。(a) d=1,扩张卷积,接受场大小为3×3,与标准卷积相同;(b) d=2,扩张卷积,接受场大小为5×5;© d=3,扩张卷积,接受场大小为7×7。
如果计算量不变,不同的扩张率d将使标准卷积k×k具有不同的接受场R,扩张卷积的接受场[22]可计算如下。
在这里插入图片描述
根据(18)计算可知,当d=1、2、3时,扩张卷积(图4a-c)相当于标准卷积的3×3、5×5、7×7接受场,分别用于图2中的分支1、2、3。
以这种方式构建的不同分支具有不同的接受场。结合上述多尺度特征融合和多层次残差学习,PMSRN可以小幅度增加计算量,增强检测图像特征信息的能力。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值