【Pandas】一文向您详细介绍 pd.read_csv() 的 usecols 参数

【Pandas】一文向您详细介绍 pd.read_csv() 的 usecols 参数
 
下滑即可查看博客内容
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!🎇

🎓 博主简介985高校的普通本硕,曾有幸发表过人工智能领域的 中科院顶刊一作论文,熟练掌握PyTorch框架

🔧 技术专长: 在CVNLP多模态等领域有丰富的项目实战经验。已累计一对一为数百位用户提供近千次专业服务,助力他们少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于深度学习、PyTorch、Python相关的实用内容。已发表原创文章500余篇,代码分享次数逾四万次

💡 服务项目:包括但不限于科研入门辅导知识付费答疑以及个性化需求解决

欢迎添加👉👉👉底部微信(gsxg605888)👈👈👈与我交流
          (请您备注来意
          (请您备注来意
          (请您备注来意

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


下滑即可查看博客内容

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🚀一、引入 usecols 参数的魅力

  在处理大型数据集时,我们可能不需要加载CSV文件中的所有列。这时候,Pandas的pd.read_csv()函数中的usecols参数就派上了用场。通过usecols,我们可以指定只加载CSV文件中的某些列,从而节省内存和时间。

  在深入了解usecols参数之前,让我们先快速回顾一下pd.read_csv()的基本用法:

import pandas as pd

# 加载CSV文件
df = pd.read_csv('example.csv')

  现在,假设我们只对example.csv中的column1column3感兴趣,我们可以使用usecols参数来指定这两列:

# 只加载'column1'和'column3'
df = pd.read_csv('example.csv', usecols=['column1', 'column3'])

📚二、usecols 参数的基础用法

  usecols参数可以接受多种类型的输入,以便我们灵活地选择列。以下是几种常见的用法:

  1. 列表形式:传递一个包含列名的列表,指定要加载的列。

    usecols = ['column1', 'column3']
    df = pd.read_csv('example.csv', usecols=usecols)
    
  2. 整数列表形式:传递一个包含列索引的列表(从0开始计数),指定要加载的列。

    # 假设'column1'是第0列,'column3'是第2列
    usecols = [0, 2]
    df = pd.read_csv('example.csv', usecols=usecols)
    
  3. 函数形式:传递一个函数,该函数将应用于CSV文件的列名,并返回一个布尔值序列,指示哪些列应该被加载。

    # 加载所有以'column'开头的列
    def select_columns(name):
        return name.startswith('column')
    
    df = pd.read_csv('example.csv', usecols=select_columns)
    

🔍三、usecols 参数的进阶用法

  在进阶使用中,我们可以结合Pandas的其他功能来进一步筛选列。例如,结合lambda函数,我们可以基于列名的某种模式或条件来选择列。

# 加载所有列名中包含数字'2'的列
df = pd.read_csv('example.csv', usecols=lambda x: '2' in str(x))

💡四、usecols 在实际场景中的应用

  在实际的数据分析中,我们经常需要处理大型数据集,并且只对其中的一部分列感兴趣。通过使用usecols参数,我们可以避免加载不必要的列,从而节省内存和时间。以下是一个具体的例子:

  假设我们有一个包含数百万行的用户行为数据CSV文件,其中包含用户的ID、时间戳、浏览页面、点击次数等多个字段。我们只对用户的ID和浏览页面感兴趣,以便分析用户的浏览习惯。通过使用usecols参数,我们可以只加载这两个字段,从而大大提高处理效率。

# 只加载'user_id'和'page_visited'列
df = pd.read_csv('user_behavior.csv', usecols=['user_id', 'page_visited'])

# 接下来,我们可以对df进行进一步的分析和处理...

🚀五、总结与展望

  通过本文的介绍,我们详细了解了Pandas中pd.read_csv()函数的usecols参数。从基础用法到进阶技巧,我们学习了如何灵活地选择CSV文件中的列,并探讨了usecols参数在实际场景中的应用。

  展望未来,随着大数据和人工智能技术的不断发展,数据处理和分析的需求将越来越迫切。Pandas作为Python中最流行的数据处理库之一,将继续发挥着重要的作用。掌握Pandas的高级用法和技巧将使我们能够更高效地处理和分析数据,从而更好地服务于实际的工作和研究。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高斯小哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值