c++背包问题代码

这篇博客详细介绍了如何使用C++解决三种类型的背包问题:01背包、完全背包和多重背包。01背包中,每种物品仅有一个,通过遍历物品和容量找到最大价值;完全背包中,每种物品无限件,改变遍历方向;多重背包中,每种物品有特定数量,转移方程需考虑物品数量。博客提供了相应的代码实现。
摘要由CSDN通过智能技术生成


公共部分

  • 变量说明:
    w[i]是重量
    v[i]是价值
    N是物品种类数目
    V是背包总容量
    f[i]表示将物品放入容量为i的背包能获得的最大价值

01背包

  • 思路:
    有N种物品,每种物品只有1个
初始化:f[0: V] = 0
for i = 1: N
	for j = V: w[i](倒着遍历)
		f[j] = max(f[j], f[j - w[i]] + v[i])

i 遍历物品,j 遍历容量,f 的方括号里面是容量而不是物品件数,因此转移方程是 f[j] 而不是 f[i]

  • 代码:
#include <bits/stdc++.h>
using namespace std;
#define N 10000
int f[N + 5];
int main()
{
   
	int V, N;
	for(int i = 1; i <= V; ++i) f[i] = 0;
	for(int i = 1; i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值