基础符号
符号 | 说明 |
---|---|
t t t | 时刻 |
i ∈ { 1 , 2 , 3... n 0 } i \in \{1,2,3...n_0\} i∈{ 1,2,3...n0} | 选择(options、levels) |
i ∗ i_* i∗ | 最佳选择(optimal option) |
j ∈ { 1 , 2 , 3... n A } j \in \{1,2,3...n_A\} j∈{ 1,2,3...nA} | 玩家(agents) |
N j t \mathcal N_j^t Njt | 与玩家 j j j在时刻 t t t进行交流的邻居集合( j ∈ N j t j \in \mathcal N_j^t j∈Njt) |
φ i t ∈ { 1 , 2 , 3... n 0 } \varphi _i^t \in \{1,2,3...n_0\} φit∈{ 1,2,3...n0} | 玩家 i i i在时刻 t t t做出的选择 |
X i t X_i^t Xit | 在时刻 t t t选择了 i i i,对应的收益(reward) |
Π { φ j t = i } ∈ { 0 , 1 } \Pi_{\{\varphi _j^t=i\}} \in \{0,1\} Π{ φjt=i}∈{ 0,1} | 玩家 j j j在时刻 t t t是否选择了 i i i |
ϵ i j t ≜ { 1 , i f ( ∑ k ∈ N j t Π { φ k t = i } ) ≠ 0 0 , i f ( ∑ k ∈ N j t Π { φ k t = i } ) = 0 \epsilon _{ij}^t \triangleq \left\{\begin{matrix}1, & if \left ( \sum_{k \in \mathcal N_j^t} \Pi_{\{\varphi _k^t=i\}} \right ) \neq 0\\0, & if \left ( \sum_{k \in \mathcal N_j^t} \Pi_{\{\varphi_k^t=i\}} \right ) = 0\end{matrix}\right. ϵijt≜⎩⎨⎧1,0,if(∑k∈NjtΠ{ φkt=i})=0if(∑k∈NjtΠ{ φkt=i})=0 | 玩家 j j j及其邻居是否有人在时刻 t t t选择了 i i i |
N i j ( t ) ≜ ∑ v = 1 t ϵ i |