GAN的缺点以及提升GAN训练


1、计数
2、角度
3、全局结构

提升GAN训练

特征匹配

给生成器一个新的训练目标,避免生成器过拟合当前的判别器。即使用判别器的中间层的特征来匹配图像的真伪,并将其作为一个监督信号来训练生成器。
通过这种方式,我们训练的生成器会匹配真实数据以及判别器中间层的预期特征值,在判别器的训练过程中,我们让判别器去寻找那些能很好判别真实数据的特征,不是那些生成模型生成数据的特征。

小批量

小批量整体来说表现更实际,可以保证不同样本之间在空间上有合适的距离。

历史平均

加入一个惩罚项来惩罚那些和历史平均权重相差过多的权重,具体来说,代价函数是当前参数值和历史上最近t批该参数平均值的距离

单侧标签平滑

我们使用标签0代表图像是真实的,1代表图像是伪造的,使用平滑标签例如0.1,0.9可以使得在一些对抗例子中更加健壮

输入规范化

大多数情况下最好将图像规范化到-1和1的范围之间并使用tanh作为生成器最后一层的激发函数

批规范化

针对真实数据和伪造数据构造不同的小批,每一个小批

使用ReLU和MaxPool避免稀疏梯度

优化器和噪声

针对生成器用ADMA作为优化器,针对判别器使用SGD作为优化器,在生成去器的不同层中去除输入层来作为噪声的来源

不要根据损失来统计信息平衡损失

while lossD>A
train D
while lossG>B
train G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nefelibat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值