1、计数
2、角度
3、全局结构
提升GAN训练
特征匹配
给生成器一个新的训练目标,避免生成器过拟合当前的判别器。即使用判别器的中间层的特征来匹配图像的真伪,并将其作为一个监督信号来训练生成器。
通过这种方式,我们训练的生成器会匹配真实数据以及判别器中间层的预期特征值,在判别器的训练过程中,我们让判别器去寻找那些能很好判别真实数据的特征,不是那些生成模型生成数据的特征。
小批量
小批量整体来说表现更实际,可以保证不同样本之间在空间上有合适的距离。
历史平均
加入一个惩罚项来惩罚那些和历史平均权重相差过多的权重,具体来说,代价函数是当前参数值和历史上最近t批该参数平均值的距离
单侧标签平滑
我们使用标签0代表图像是真实的,1代表图像是伪造的,使用平滑标签例如0.1,0.9可以使得在一些对抗例子中更加健壮
输入规范化
大多数情况下最好将图像规范化到-1和1的范围之间并使用tanh作为生成器最后一层的激发函数
批规范化
针对真实数据和伪造数据构造不同的小批,每一个小批
使用ReLU和MaxPool避免稀疏梯度
优化器和噪声
针对生成器用ADMA作为优化器,针对判别器使用SGD作为优化器,在生成去器的不同层中去除输入层来作为噪声的来源
不要根据损失来统计信息平衡损失
while lossD>A
train D
while lossG>B
train G