2017秦皇岛ccpc G(大数除法、取余+均分)

这篇博客探讨了一种求解序列和为n的m个整数,使得序列或值最小的算法。作者首先考虑了平均分配,然后通过分析特殊情况n=314,m=10,发现不能简单均分。接着提出对于除数x=n/m+1,检查其是否为2的幂次,如果是,则分配该数值以避免进位,如果不是,则分配x-lowbit(x)以减少或值。代码中使用了大数运算来处理大整数,确保结果的准确性。
摘要由CSDN通过智能技术生成

题目链接:传送门
参考文章
题目:
输入一个n,m求出 序列ai,满足Σai = n,最终使序列ai序列或值最小。

思路:
1、考虑将n均分为m个数字
2、考虑特殊情况n = 314,m = 10;
此时如果均分为32,31,但是32|31 = 63,因为从n/m到n/m+1的二进制数字进位了,所以这样分并不能使最终或值最小。
可以对每次的除数x = n/m+1,然后判断x二进制数字是不是等于2^k;
(1)如果x == 2^k,分配2 ^ k数字,防止进位导致过大;
eg:给314分配(314/32)个32,更新n = 314 - (314/32)* 32 = 26;ans += 32;
(2)如果x != 2^k,考虑除了二进制最后一位一不分配其他都分配即分配( x - lowbit(x) ).
eg:n = 26,m = 10时,算出x = 3;( x - lowbit(x) ) = 2,所以给每个数字分配2,剩余n = 26 - 10*2 = 6,同时更新答案ans += 2;

这样分配可以让每次分配尽量大的数字,但是最终的结果能达到最小。(大数用Java实现更方便)

代码:


import java.util.*;
import java.math.*;

public class Main {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner input = new Scanner(System.in);
		BigInteger zero = new BigInteger("0");
		BigInteger one = new BigInteger("1");
		BigInteger two = new BigInteger("2");
		
		int T = input.nextInt();
		for(int i=0;i<T;i++) {
			BigInteger a = input.nextBigInteger();
			BigInteger b = input.nextBigInteger();
			if(a.mod(b).equals(zero) == true) {
				System.out.println(a.divide(b));
				continue;
			}
			BigInteger ans = zero;
			while(a.compareTo(zero) == 1) {
				BigInteger tp = a.divide(b).add(one);
				BigInteger left = lowbit(tp);
				if(left.equals(tp) == true) {
					a = a.subtract(a.divide(tp).multiply(tp));
					ans = ans.add(tp);
				}
				else {
					tp = tp.subtract(left);
					a = a.subtract(b.multiply(tp));
					ans = ans.add(tp);
				}
			}
			
			System.out.println(ans);
		}
	}

	public static BigInteger lowbit(BigInteger x) {
		return x.and(x.multiply(new BigInteger("-1")));
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值