时空论文小结

本文总结了多篇关于时空深度学习的论文,包括利用深度学习进行无监督异常检测的《A Spatiotemporal Deep Learning Approach for Unsupervised Anomaly Detection in Cloud Systems》,探讨边缘网络中IT操作的人工智能应用的《Spatial-Temporal Learning-Based Artificial Intelligence for IT Operations in the Edge Network》,以及采用图注意力网络进行多变量时间序列异常检测的《Multivariate Time-series Anomaly Detection via Graph Attention Network》。此外,还提到了使用图神经网络进行多变量时间序列预测的研究《Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks》以及在TKDE发表的关于自监督图异常检测的文章。
摘要由CSDN通过智能技术生成

《A Spatiotemporal Deep Learning Approach for Unsupervised Anomaly Detection in Cloud Systems》-2020-TNNLS-B类
在这里插入图片描述
《Spatial-Temporal Learning-Based Artificial Intelligence for IT Operations in the Edge
Network》-Magzine-2020
在这里插入图片描述
《Multivariate Time-series Anomaly Detection via Graph Attention Network》-2020-ICDM-B类
在这里插入图片描述
Connecting the Dots: Multivariate Time Series Forecasting with
Graph Neural Networks-2020-KDD-A类
在这里插入图片描述
a22-2021-TKDE(A类)-无监督-Generative_and_Contrastive_Self Supervised_Learning_for_Graph_Anomaly_Detection
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值