梯度下降的原理与实践

梯度下降是

首先,我们有一个可微分的函数。这个函数就代表着一座山。我们的目标就是找到这个函数的最小值,也就是山底。最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数之变化最快的方向(在后面会详细解释)
所以,我们重复利用这个方法,反复求取梯度,最后就能到达局部的最小值,这就类似于我们下山的过程。而求取梯度就确定了最陡峭的方向,也就是场景中测量方向的手段。那么为什么梯度的方向就是最陡峭的方向呢?接下来,我们从微分开始讲起

看待微分的意义,可以有不同的角度,最常用的两种是:

微分

  1. 函数图像中,某点的切线的斜率
  2. 函数的变化率
    几个微分的例子:

在这里插入图片描述

上面的例子都是单变量的微分,当一个函数有多个变量的时候,就有了多变量的微分,即分别对每个变量进行求微分

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

梯度

梯度实际上就是多变量微分的一般化。
下面这个例子:
在这里插入图片描述

我们可以看到,梯度就是分别对每个变量进行微分,然后用逗号分割开,梯度是用<>包括起来,说明梯度其实一个向量。
梯度是微积分中一个很重要的概念,之前提到过梯度的意义

在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率
在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向

这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的方向一直走,就能走到局部的最低点!

在这里插入图片描述

梯度下降算法的数学解释

上面我们花了大量的篇幅介绍梯度下降算法的基本思想和场景假设,以及梯度的概念和思想。下面我们就开始从数学上解释梯度下降算法的计算过程和思想!

在这里插入图片描述

此公式的意义是:J是关于Θ的一个函数,我们当前所处的位置为Θ0点,要从这个点走到J的最小值点,也就是山底。首先我们先确定前进的方向,也就是梯度的反向,然后走一段距离的步长,也就是α,走完这个段步长,就到达了Θ1这个点!
在这里插入图片描述

下面就这个公式的几个常见的疑问:

α是什么含义?
α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈,其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以α的选择在梯度下降法中往往是很重要的!α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!

在这里插入图片描述

为什么要梯度要乘以一个负号?
梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号

梯度下降算法的实例

我们已经基本了解了梯度下降算法的计算过程,那么我们就来看几个梯度下降算法的小实例,首先从单变量的函数开始

单变量函数的梯度下降

我们假设有一个单变量的函数

在这里插入图片描述

函数的微分

image.png

初始化,起点为
在这里插入图片描述

学习率为

在这里插入图片描述
根据梯度下降的计算公式

在这里插入图片描述
我们开始进行梯度下降的迭代计算过程:
在这里插入图片描述

如图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底

在这里插入图片描述

多变量函数的梯度下降

我们假设有一个目标函数
在这里插入图片描述

现在要通过梯度下降法计算这个函数的最小值。我们通过观察就能发现最小值其实就是 (0,0)点。但是接下来,我们会从梯度下降算法开始一步步计算到这个最小值!
我们假设初始的起点为:

在这里插入图片描述

初始的学习率为:

在这里插入图片描述

函数的梯度为:

image.png

进行多次迭代:

image.png

我们发现,已经基本靠近函数的最小值点

在这里插入图片描述

梯度下降算法的实现

下面我们将用python实现一个简单的梯度下降算法。场景是一个简单的线性回归的例子:

import numpy as np
%matplotlib inline
import pylab
# Size of the points dataset.
m = 20

# Points x-coordinate and dummy value (x0, x1).
X0 = np.ones((m, 1))
X1 = np.arange(1, m+1).reshape(m, 1)
X = np.hstack((X0, X1))
print (X)
# Points y-coordinate
y = np.array([
    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
    11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1)
# The Learning Rate alpha.
alpha = 0.01
[[ 1.  1.]
 [ 1.  2.]
 [ 1.  3.]
 [ 1.  4.]
 [ 1.  5.]
 [ 1.  6.]
 [ 1.  7.]
 [ 1.  8.]
 [ 1.  9.]
 [ 1. 10.]
 [ 1. 11.]
 [ 1. 12.]
 [ 1. 13.]
 [ 1. 14.]
 [ 1. 15.]
 [ 1. 16.]
 [ 1. 17.]
 [ 1. 18.]
 [ 1. 19.]
 [ 1. 20.]]

在这里插入图片描述


def error_function(theta, X, y):
    '''Error function J definition.'''
    diff = np.dot(X, theta) - y
    return (1./2*m) * np.dot(np.transpose(diff), diff)

def gradient_function(theta, X, y):
    '''Gradient of the function J definition.'''
    diff = np.dot(X, theta) - y
    return (1./m) * np.dot(np.transpose(X), diff)

def gradient_descent(X, y, alpha):
    '''Perform gradient descent.'''
    theta = np.array([1, 1]).reshape(2, 1)
    gradient = gradient_function(theta, X, y)
    while not np.all(np.absolute(gradient) <= 1e-5):
        theta = theta - alpha * gradient
        gradient = gradient_function(theta, X, y)
    return theta


optimal = gradient_descent(X, y, alpha)
print('optimal:', optimal)
lists =optimal.tolist()
w=lists[0][0]
b=lists[1][0]
y_predict = b*X1+w
pylab.plot(X1,y,'o')

pylab.plot(X1,y_predict,'k-')
pylab.show()
print('error function:', error_function(optimal, X, y)[0,0])
optimal: [[0.51583286]
 [0.96992163]]

在这里插入图片描述
error function: 405.9849624932405

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值