11、气象学中常用的相关分析方法


气象数据处理与分析中,经常需要统计两个或多个变量之间的相关关系。本文主要讲解皮尔逊(普通)相关、Spearman秩相关、Kendall’s τ \tau τ相关以及序列相关的使用方法以及适用条件,并给出相应的Python实践案例。

一、皮尔逊(普通)相关

两个变量 x , y x,y x,y之间的皮尔逊相关系数可以表示为:
r x y = Cov ⁡ ( x , y ) s x s y = 1 n − 1 ∑ i = 1 n [ ( x i − x ˉ ) ( y i − y ˉ ) ] [ 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ] 1 / 2 [ 1 n − 1 ∑ i = 1 n ( y i − y ˉ ) 2 ] 1 / 2 (1) r_{x y}=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2}\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right]^{1 / 2}} \tag{1} rxy=sxsyCov(x,y)=[n11i=1n(xixˉ)2]1/2[n11i=1n(yiyˉ)2]1/2n11i=1n[(xixˉ)(yiyˉ)](1)

r x y = ∑ i = 1 n ( x i ′ y i ′ ) [ ∑ i = 1 n ( x i ′ ) 2 ] 1 / 2 [ ∑ i = 1 n ( y i ′ ) 2 ] 1 / 2 (2) r_{xy}=\frac{\sum_{i=1}^{n}\left(x_{i}^{\prime} y_{i}^{\prime}\right)}{\left[\sum_{i=1}^{n}\left(x_{i}^{\prime}\right)^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n}\left(y_{i}^{\prime}\right)^{2}\right]^{1 / 2}} \tag{2} rxy=[i=1n(xi)2]1/2[i=1n(yi)2]1/2i=1n(xiyi)(2)
皮尔逊相关系数,既不具有鲁棒性也不具有稳定性。它不具有鲁棒性,点那个两个变量 x , y x,y x,y之间有很强但是非线性关系时,是不可以识别的。不具有稳定性,是因为它可能对一个或者几个离群点极为敏感。但是皮尔逊相关系数非常适合数学运算,所以经常被使用,并于回归分析等内容有密切关系。
皮尔逊相关系数的两个重要性质:

  • 皮尔逊相关系数数值在[-1,1]之间
  • 皮尔逊相关系数的平方 r x y 2 r^{2}_{xy} rxy2 表征 x x x或者 y y y中一个由另一个线性说明或描述的比例,但这个是不合理的。
    皮尔逊相关系数的另一个表示方法:

r x y = 1 n − 1 ∑ i = 1 n [ ( x i − x ˉ ) s x ( y i − y ˉ ) s y ] = 1 n − 1 ∑ i = 1 n z x i z y i (3) r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left[\frac{\left(x_{i}-\bar{x}\right)}{s_{x}} \frac{\left(y_{i}-\bar{y}\right)}{s_{y}}\right]=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}} \tag{3} rxy=n11i=1n[sx(xixˉ)sy(yiyˉ)]=n11i=1nzxizyi(3)
从计算角度考虑,上述皮尔逊计算公式是复杂的,会消耗大量的计算资源,导致运行效率的下降。为此,提出了以下的计算公式,以提高运行与计算效率。

∑ i = 1 n [ ( x i − x ˉ ) ( y i − y ˉ ) ] = ∑ i = 1 n [ x i y i − x i y ˉ − y i x ˉ − x ˉ y ˉ ) ] = ∑ i = 1 n ( x i y i ) − y ˉ ∑ i = 1 n x i − x ˉ ∑ i = 1 n y i + x ˉ y ˉ ∑ i = 1 n ( 1 ) = ∑ i = 1 n ( x i y i ) − n x ˉ y ˉ − n x ˉ y ˉ + n x ˉ y ˉ = ∑ i = 1 n ( x i y i ) − 1 n [ ∑ i = 1 n x i ] [ ∑ i = 1 n y i ] (4) \begin{aligned} \sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right] &\left.=\sum_{i=1}^{n}\left[x_{i} y_{i}-x_{i} \bar{y}-y_{i} \bar{x}-\bar{x} \bar{y}\right)\right] \\ &=\sum_{i=1}^{n}\left(x_{i} y_{i}\right)-\bar{y} \sum_{i=1}^{n} x_{i}-\bar{x} \sum_{i=1}^{n} y_{i}+\bar{x} \bar{y} \sum_{i=1}^{n}(1) \\ &=\sum_{i=1}^{n}\left(x_{i} y_{i}\right)-n \bar{x} \bar{y}-n \bar{x} \bar{y}+n \bar{x} \bar{y} \\ &=\sum_{i=1}^{n}\left(x_{i} y_{i}\right)-\frac{1}{n}\left[\sum_{i=1}^{n} x_{i}\right]\left[\sum_{i=1}^{n} y_{i}\right] \end{aligned} \tag{4} i=1n[(xixˉ)(yiyˉ)]=i=1n[xiyixiyˉyixˉxˉyˉ)]=i=1n(xiyi)yˉi=1nxixˉi=1nyi+xˉyˉi=1n(1)=i=1n(xiyi)nxˉyˉnxˉyˉ+nxˉyˉ=i=1n(xiyi)n1[i=1nxi][i=1nyi](4)

s x = ( ∑ x i 2 − n x ˉ 2 n − 1 ) 1 / 2 = [ ∑ x i 2 − 1 n ( ∑ x i ) 2 n − 1 ] 1 / 2 (5) s_{x}=\left(\frac{\sum x_{i}^{2}-n \bar{x}^{2}}{n-1}\right)^{1 / 2}=\left[\frac{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}}{n-1}\right]^{1 / 2} \tag{5} sx=(n1xi2nxˉ2)1/2=[n1xi2n1(xi)2]1/2(5)

r x y = ∑ i = 1 n x i y i − 1 n ( ∑ i = 1 n x i ) ( ∑ i = 1 n y i ) [ ∑ i = 1 n x i 2 − 1 n ( ∑ i = 1 n x i ) 2 ] 1 / 2 [ ∑ i = 1 n y i 2 − 1 n ( ∑ i = 1 n y i ) 2 ] 1 / 2 (6) r_{x y}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n} y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]^{1 / 2}} \tag{6} rxy=[i=1nxi2n1(i=1nxi)2]1/2[i=1nyi2n1(i=1nyi)2]1/2i=1nxiyin1(i=1nxi)(i=1nyi)(6)

代码实现

pccs_1 = np.corrcoef(x1, y1)
pccs_2 = np.corrcoef(x2, y2)
print(pccs_1)
print("=====================================")
print(pccs_2)

二、Spearman秩相关

Spearman秩相关具有鲁棒性和抗干扰性,可以有效弥补皮尔逊相关的不足。Spearman秩相关使用的是资料的秩,而不是资料本身,其具体计算过程如下:

  • 将数据本身转化成数据的秩。
    在这里插入图片描述

  • 计算公式
    如果没有重复的秩,使用下列公式进行计算:
    r r a n k = 1 − 6 ∑ i = 1 n D i 2 n ( n 2 − 1 ) (7) r_{\mathrm{rank}}=1-\frac{6 \sum_{i=1}^{n} D_{i}^{2}}{n\left(n^{2}-1\right)} \tag{7} rrank=1n(n21)6i=1nDi2(7)
    其中 D i = x i ′ − y i ′ D_{i}=x^{'}_{i}-y^{'}_{i} Di=xiyi,为 y i y_{i} yi x i x_{i} xi之间的秩差值。
    具体推导过程:
    从1到n的整数平均值为 n + 1 2 \frac{n+1}{2} 2n+1,其方差为 n ( n + 1 ) 12 \frac{n(n+1)}{12} 12n(n+1), 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+\cdots +n^2=\frac{n(n+1)(2n+1)}{6} 12+22++n2=6n(n+1)(2n+1)
    r r a n k = 1 n − 1 ∑ i = 1 n [ ( x i − x ˉ ) ( y i − y ˉ ) ] [ 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ] 1 / 2 [ 1 n − 1 ∑ i = 1 n ( y i − y ˉ ) 2 ] 1 / 2 (8) \begin{aligned} r_{\mathrm{rank}}=\frac{\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2}\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right]^{1 / 2}}\\ \end{aligned} \tag{8} rrank=[n11i=1n(xixˉ)2]1/2[n11i=1n(yiyˉ)2]1/2n11i=1n[(xixˉ)(yiyˉ)](8)
    对上述式子进行化简并代入可以得到:
    r r a n k = 1 n − 1 ∑ i = 1 n x i y i − n x ˉ y ˉ n ( n + 1 ) 12 = 12 ∑ i = 1 n x i y i − n x ˉ y ˉ n ( n + 1 ) ( n − 1 ) = 12 ∑ i = 1 n x i y i − n ( n + 1 ) 2 4 n ( n + 1 ) ( n − 1 ) = 12 ∑ i = 1 n x i y i − 3 n ( n + 1 ) 2 n ( n + 1 ) ( n − 1 ) (9) \begin{aligned} r_{rank} &= \frac{1}{n-1}\frac{\sum_{i= 1}^{n}x_{i}y_{i}-n\bar{x}\bar{y}}{\frac{n(n+1)}{12} } \\ &=12\frac{\sum_{i=1}^{n}x_{i}y_{i}-n\bar{x}\bar{y} }{n(n+1)(n-1)} \\ &=12\frac{\sum_{i=1}^{n}x_{i}y_{i}-\frac{n(n+1)^2}{4} }{n(n+1)(n-1)} \\ &=\frac{12\sum_{i=1}^{n}x_{i}y_{i}-3n(n+1)^2 }{n(n+1)(n-1)} \end{aligned} \tag{9} rrank=n1112n(n+1)i=1nxiyinxˉyˉ=12n(n+1)(n1)i=1nxiyinxˉyˉ=12n(n+1)(n1)i=1nxiyi4n(n+1)2=n(n+1)(n1)12i=1nxiyi3n(n+1)2(9)

∑ i = 1 n x i y i = ∑ i = 1 m x i 2 + ∑ i = 1 n y i 2 − ∑ i = 1 n ( x i − y i ) 2 (10) \begin{aligned} \sum_{i=1}^{n} x_{i}y_{i}=\sum_{i=1}^{m}x_{i}^2+\sum_{i=1}^{n}y_{i}^2-\sum_{i=1}^{n}(x_{i}-y_{i})^2 \end{aligned} \tag{10} i=1nxiyi=i=1mxi2+i=1nyi2i=1n(xiyi)2(10)
将公式(10)代入公式(9)后,利用 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+\cdots +n^2=\frac{n(n+1)(2n+1)}{6} 12+22++n2=6n(n+1)(2n+1),便可得到公式(7)的结果。
如果存在重复的秩,则需要计算秩次之间的皮尔逊相关系数:
r r a n k = ∑ i ( x i − x ˉ ) ( y i − y ˉ ) ∑ i ( x i − x ˉ ) 2 ∑ i ( y i − y ˉ ) 2 (11) r_{\mathrm{rank}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}}} \tag{11} rrank=i(xixˉ)2i(yiyˉ)2 i(xixˉ)(yiyˉ)(11)

代码实现

import scipy.stats
x1=[0,1,2,3,5,7,9,12,16,20]
y1=[0,3,6,8,11,13,14,15,16,16]
scipy.stats.spearmanr(x1,y1)

三、Kendall’s相关

kendall的 τ \tau τ相关同样具有鲁棒性和抗干扰性,是皮尔逊相关系数的第二种替代方案。
计算公式为:
τ = N C − N D n ( n − 1 ) / 2 (12) \tau=\frac{N_{C}-N_{D}}{n(n-1) / 2} \tag{12} τ=n(n1)/2NCND(12)

N C N_{C} NC一致数据对的数目
N D N_{D} ND不一致的数据对数目
下面通过一个具体的数据进行说明:
在这里插入图片描述

以样本编号1为例,样本1-9的年龄都比样本1大,且样本1-9的任务完成度也全部大于样本1的任务完成度,所以一致对数为9,不一致对数为0。

代码实现

import scipy.stats
age=[10,15,18,21,23,25,28,30,45,41]
degree=[0.001,0.04,0.01,0.03,0.02,0.56,0.12,0.75,0.78,0.89]
scipy.stats.kendalltau(age,degree)
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 《雷达气象学》是由气象学家张培昌编写的一本专业教材,针对雷达在气象领域的应用进行了系统的阐述和解析。这本书共分为16个章节,内容包括雷达的基本原理、设计和技术参数、雷达回波的图像处理与解译、雷达定量降水估算方法等。 张培昌教授是我国著名的气象学家和雷达遥感专家,在国内外学术界享有很高的声誉。他凭借多年的研究和实践经验,深入浅出地介绍了雷达气象学的基本概念和理论,并结合实际案例,具体讲解了雷达观测资料的获取与分析方法。 《雷达气象学》这本书对于气象学、大气科学、遥感等相关专业的学生和从事雷达气象研究的科研人员都具有重要的参考价值。通过学习这本书,读者可以全面了解雷达在气象观测和预测的应用,并能够掌握雷达图像的解译和气象参数的计算方法。 此外,张培昌教授还详细介绍了雷达图像处理的基本原理和常用算法,帮助读者提高对雷达观测资料的理解和利用能力。这本书通俗易懂,结构严谨,内容丰富,是学习和研究雷达气象学的重要参考资料之一。 总之,通过《雷达气象学》,读者能够系统地学习雷达的基本原理和应用技术,为深入了解和研究雷达气象学打下坚实的基础。张培昌教授以其丰富的学术经验和深厚的研究功底,为本书提供了权威性和可靠性,使其成为了研究雷达气象学的必备参考书籍。 ### 回答2: 《雷达气象学 张培昌pdf》是一本关于雷达技术在气象学应用的著作。雷达气象学是研究利用雷达技术观测和分析天气现象的学科。 雷达气象学气象预报、灾害监测和气象研究起着重要的作用。通过雷达,可以观测到大气的水汽、云、降水等天气要素。利用雷达数据,可以获取具体的天气信息,如降水的强度、类型和空间分布等。这些信息对于气象的研究和预报都具有重要意义。 张培昌的《雷达气象学》是一本经典的著作。他在该书系统地介绍了雷达技术在气象学的应用和发展。书包括雷达原理、雷达观测技术、雷达图像处理等内容。通过阅读该书,读者可以了解雷达技术的基本原理和应用方法,从而更好地理解和运用雷达数据进行气象研究和预报。 该书的PDF版本使读者更方便地获取相关知识。PDF格式可以在电脑或手机上进行阅读,随时随地进行学习。对于对雷达气象学感兴趣的人来说,这本书是一份宝贵的参考资料。 总之,《雷达气象学 张培昌pdf》是一本关于雷达技术在气象学应用的经典著作,通过阅读这本书,读者可以对雷达气象学有更深入的了解,并能够更好地运用雷达技术进行气象研究和预报。 ### 回答3: 《雷达气象学张培昌pdf》是一本有关雷达在气象学的应用的电子书。张培昌是国著名的气象学专家,他在雷达气象学领域做出了许多重要贡献。 这本书系统地介绍了雷达在气象学的原理、技术和应用。它首先概述了雷达技术的发展历程和基本原理,然后详细地讲解了雷达在观测和预测气象现象的应用。书涵盖了天气雷达、降水雷达、多普勒雷达等不同类型的雷达,以及它们在气象观测、气象预警、空气质量监测等方面的具体应用。 这本书不仅介绍了雷达气象学的理论知识,还结合实际案例展示了雷达在气象学研究和应用的重要作用。它详细解释了雷达图像的解读方法和常见气象现象的识别技巧,帮助读者更好地理解和利用雷达资料。 《雷达气象学张培昌pdf》对于从事气象学研究和工作的专业人士和学生来说是一本非常有价值的参考书。它全面、系统地介绍了雷达在气象学的应用,能够帮助读者深入理解雷达技术和气象现象之间的关联,并提供了实用的分析方法和解决问题的思路。 总之,《雷达气象学张培昌pdf》是一本权威的、实用的雷达气象学参考书,对于对雷达技术和气象学感兴趣的人来说是一本值得阅读的书籍。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱转呼啦圈的小兔子

觉得文章不错?请小编喝杯咖啡吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值