偏标签学习

偏标签学习的研究现状

现有的偏标签学习的消歧方法大致可分为三类:基于平均的消歧策略(Averaging-based Disambiguation Strategies)、基于辨识的消歧策略(Identification-based Disambiguation Strategies)和基于流形假设的消歧策略(Manifold Assumption-based Disambiguation Strategies)。
1.基于平均的消歧策略,通过给候选标签中的标签赋予每个样本相同的权重来识别真实标签,然后通过对所有候选标签或其邻域中的候选标签的输出进行平均来获得预测。遵循这种策略,基于平均的消歧策略可以进一步分为基于辨识的学习方法和基于实例的学习方法。
2.基于辨识的消歧策略,不同于基于平均的消歧策略,现有的基于辨识的消歧策略通过将真实标签直接确定为 在这里插入图片描述
的方式,将其视为潜在变量。
3.基于流形假设的消歧策略,不同于上述策略利用候选标签集构造偏标签学习算法。由于上述策略的泛化能力上限通常受到噪声标签的限制,因此为了突破这一局限性,基于流形假设的消歧策略,利用了流形假设认为相似的样本向量拥有相似的输出这一特性,尽可能从偏标记数据集中挖掘有用的信息。

reference

[1]闵子剑.(2020).适用于偏标记学习的概率传播算法(硕士学位论文,重庆邮电大学).https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202101&filename=1020416843.nh

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【资源说明】 基于python实现的心电时序多标签分类源码+数据集+操作说明.zip 心电时序多标签分类 ## 数据预处理 - 原始数据 心电序列 data/source_data/hf_round2_train/100001.txt ``` I II V1 V2 V3 V4 V5 V6 12 27 14 54 11 6 20 4 13 27 14 54 11 6 20 4 14 28 14 55 12 7 20 4 15 29 14 55 12 8 20 4 16 30 14 56 13 9 20 4 17 30 14 56 13 9 20 4 19 31 15 57 14 10 21 5 20 31 14 57 14 10 21 5 21 32 14 57 14 10 21 5 22 32 13 57 14 10 21 5 23 32 13 57 14 10 21 5 24 33 12 58 15 11 21 6 24 33 11 58 15 11 21 7 24 33 11 58 15 11 21 7 24 33 10 58 15 11 21 8 24 33 10 58 15 11 21 8 ... ``` ![image](data/0.png) ![image](data/1.png) 异常事件标签 data/source_data/hf_round2_arrythmia.txt ``` QRS低电压 电轴右 起搏心律 T波改变 电轴左 心房颤动 非特异性ST段异常 下壁异常Q波 前间壁R波递增不良 ST段改变 一度房室传导阻滞 左束支传导阻滞 右束支传导阻滞 完全性左束支传导阻滞 左前分支传导阻滞 右心房扩大 短PR间期 左心室高电压 窦性心动过缓 早期复极化 窦性心律 融合波 ST-T改变 非特异性ST段与T波异常 快心室率 非特异性T波异常 室性早搏 房性早搏 窦性心律不齐 完全性右束支传导阻滞 窦性心动过速 不完全性右束支传导阻滞 顺钟向转位 逆钟向转位 ``` - 标签统计筛选 ``` >>> python label_select.py -h usage: label_select.py [-h] [-th THRESHOLD] select label above threshold. optional arguments: -h, --help show this help message and exit -th THRESHOLD, --threshold THRESHOLD Threshold of label select. Default: 0.99 ``` - 数据处理 ``` >>> python data_preprocess.py -h usage: data_preprocess.py [-h] [-t TEST_SIZE] data preprocess of ecg. optional arguments: -h, --help show this help message and exit -t TEST_SIZE, --test TEST_SIZE Test size of data set split. Default: 0.2 ``` ## 训练 ``` >>> python train.py -h usage: train.py [-h] [-b BATCH_SIZE] [-lr LR] [-e EPOCH] train ResNet from ecg data. optional arguments: -h, --help show this help message and exit -b BATCH_SIZE, --batch BATCH_SIZE Batch size of training. Default: 8 -lr LR, --lr LR Lea 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
Sklearn多标签分类准确率是指对以二元组表示的多标签分类问题进行预测时,预测结果正确的百分比。在sklearn中,多标签分类可以使用许多分类算法进行处理,如kNN、SVM、决策树、随机森林等。 多标签分类准确率衡量了一个模型在多标签分类问题上的性能。然而,正如在许多其他机器学习问题上一样,准确率并不总是能够准确地衡量模型的性能。在多标签分类问题中,标签数量可能非常大,每个标签都有可能对应着许多样本。而且,每个样本都有可能属于多个标签。这些标签之间的相关性可能非常高,也可能非常低。因此,与准确率相关的评价指标也可能非常复杂。 针对多标签分类问题,比较通用的评价指标有精确度、召回率、F1-Score等。精确度衡量了在预测为正例的样本中实际为正例的样本所占的比例,而召回率衡量了在实际为正例的样本中被正确预测为正例的样本所占的比例。而F1-Score则是综合了精确度和召回率的指标。 在实际应用中,需要根据具体情况选择合适的评价指标来衡量模型的性能。比如,对于斜数据集(即正负样本比例严重失衡的数据集),F1-Score可能更适合用来衡量模型的性能。同时,还需要注意评价指标之间的平衡关系,有些指标可能会平衡精确度和召回率之间的关系,从而更好地评估模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值