格、有界格、分配格

假设 ( L , ≼ ) (L, \preccurlyeq) (L,)为偏序集,如果对于任意 a , b ∈ L , a , b a, b\in L ,{a, b} a,bL,a,b 都存在上确界和下确界,则称 < L , ≼ > <L,\preccurlyeq> <L,> 为一个格 ( l a t t i c e ) (lattice) lattice

显然上确界和下确界有唯一性

上确界 L ∪ B ( a , b ) L \cup B({a, b}) LB(a,b)记作a ∨ \lor b,称之为a与b的并 ( j o i n ) (join) join

下确界 G ∩ B ( a , b ) G\cap B({a, b}) GB(a,b)记作a ∧ \land b,称之为a与b的交 ( m e e t ) (meet) meet

最大元、最小元

最大元:指偏序集的子集中不小于一切的元素
最小元:指偏序集的子集中不大于一切的元素

极大元、极小元

极大元:指偏序集中没有比它更大的可比较的元素
极小元:指偏序集中没有比它更小的可比较的元素

有界格

存在最大元和最小元的格称为有界格。

补元

< L , ≼ > <L,≼> <L,>是有界格,a,b是L中的两个元,若 a ∨ b = 1 , a ∧ b = 0 a∨b=1,a∧b=0 ab=1,ab=0,则称a是b的补元或b是a的补元,或称a和b互为补元.

a ∨ b = 1 a \lor b=1 ab=1意思是 a 和 b a和b ab向上走只有一个共同点 1 1 1.
a ∧ b = 1 a \land b=1 ab=1意思是 a 和 b a和b ab向下走只有一个共同点 0 0 0.

分配格

满足分配率的即为分配格

对于格的任意元素x,y和z,均有 x ∧ ( y ∨ z ) = ( x ∧ y ) ∨ ( x ∧ z ) x∧(y∨z)=(x∧y)∨(x∧z) x(yz)=(xy)(xz)。由于格中结运算和交运算的对称性,上述条件等价于 x ∨ ( y ∧ z ) = ( x ∨ y ) ∧ ( x ∨ z ) x∨(y∧z)=(x∨y)∧(x∨z) x(yz)=(xy)(xz),当 L L L为分配格时,交运算对于结运算满足分配律,而且反之亦真。
布尔格、除数格、理想格、链等均为分配格。

判断

有界格中的某元的补元不止一个。则它不是分配格 √ \surd

<think>好的,用户问的是“有界的补元怎么求”。我需要先回忆一下有界和补元的定义。首先,是一种偏序集,其中任意两个元素都有最小上界和最大下界。有界是指这个有最大元(通常记为1)和最小元(0)。补元的定义是,对于元素a,如果存在元素b,使得a∨b=1且a∧b=0,那么b就是a的补元。不过,并不是所有有界中的元素都有补元,或者可能有多个补元,这取决于的结构。 接下来,我需要考虑用户可能的背景。他们可能是在学习抽象代数或离散数学,遇到了关于的问题。用户可能需要具体的步骤来找到补元,或者想了解补元存在的条件。因此,我需要先解释基本概念,再给出求补元的方法,可能还需要举例说明。 首先,我应该明确补元的定义,强调必须同时满足两个条件:交和并的结果分别是0和1。然后,分步骤说明如何寻找补元。例如,在有界中给定一个元素a,需要检查是否存在元素b使得这两个条件成立。可能需要遍历所有可能的元素来验证,特别是在有限的情况下。 然后,可以提到不同类型的,比如分配格和布尔代数。在布尔代数中,每个元素都有唯一的补元,这就是布尔补。但在一般的分配格中,可能存在没有补元的情况,或者补元不唯一。因此,需要根据具体的结构来分析。 接下来,举例子可能会有帮助。比如,考虑一个简单的布尔代数,像幂集,其中每个集合的补元就是其补集。另一个例子可以是菱形(钻石),中间的元素可能有两个补元,而顶和底元素互为补元。再比如五边形,其中某些元素可能没有补元,这说明并非所有有界都是可补的。 此外,需要指出补元的存在性不一定保证,如果不是分配的,可能存在元素有多个补元或者没有。比如,在钻石中,中间元素的两个补元可能存在,而在五边形中,可能存在元素没有补元。 用户可能需要知道,当面对具体的有界时,如何系统地寻找某个元素的补元。这时候,步骤可能包括:1.确定的最大元和最小元;2.对于给定元素a,检查所有其他元素b,是否满足a∨b=1且a∧b=0;3.列出所有满足条件的b,即为a的补元。 但要注意,对于无限,这样的遍历可能不可行,需要其他方法。不过在大多数情况下,特别是课程问题中,遇到的应该是有限,比如常见的哈斯图表示的。 可能还需要提醒用户,补元不一定存在,所以需要先确定是否存在补元,如果存在的话再找出来。如果不存在,则说明该元素在该中没有补元。 最后,总结一下步骤,并强调补元的重要性和应用,比如在布尔代数中的应用,这样用户能理解为什么需要学习这个知识点。</think>有界的补元求解方法及步骤如下: --- ### 一、基本概念 1. **有界**:存在最大元(记为 $1$)和最小元(记为 $0$)的。 2. **补元**:对元素 $a$,若存在元素 $b$ 满足: - $a \vee b = 1$(上确界为最大元) - $a \wedge b = 0$(下确界为最小元) 则称 $b$ 是 $a$ 的补元。 --- ### 二、求解步骤 1. **确定的结构** 画出哈斯图或列出所有元素,明确中元素的偏序关系和运算($\vee$ 和 $\wedge$)。 2. **遍历所有候选元素** 对给定元素 $a$,检查其他元素 $b$ 是否满足: - $a \vee b = 1$ - $a \wedge b = 0$ 3. **验证条件** 若存在多个 $b$ 满足条件,则所有符合条件的 $b$ 均为 $a$ 的补元;若不存在,则 $a$ 无补元。 --- ### 三、关键性质 1. **唯一性** - 在**分配格**中,若元素有补元,则补元唯一。 - 在**布尔代数**(有补分配格)中,所有元素均有唯一补元。 2. **特殊元素的补元** - $0$ 的补元是 $1$,反之亦然。 --- ### 四、示例分析 #### 例1:布尔代数(幂集) - **结构**:集合 $S$ 的幂集,运算为并集 $\cup$ 和交集 $\cap$。 - **补元**:对任意子集 $A$,其补元为 $S \setminus A$(集合的补集)。 #### 例2:菱形(钻石) - **元素**:$\{0, a, b, 1\}$,哈斯图如下: ``` 1 / \ a b \ / 0 ``` - **补元**: - $0$ 的补元是 $1$,$1$ 的补元是 $0$。 - $a$ 的补元是 $b$,$b$ 的补元是 $a$(因为 $a \vee b = 1$,$a \wedge b = 0$)。 #### 例3:五边形 $N_5$ - **结构**:$\{0, a, b, c, 1\}$,满足 $0 < a < b < 1$,$0 < c < 1$,且 $a$ 与 $c$ 不可比。 - **补元**: - $b$ 无补元(因为无法找到元素 $x$ 使得 $b \vee x = 1$ 且 $b \wedge x = 0$)。 --- ### 五、注意事项 1. **补元不唯一**:非分配格中,元素可能有多个补元。 2. **补元不存在**:某些中存在无补元的元素(如五边形)。 --- ### 六、总结 - 补元的求解依赖于具体的结构。 - 需逐一验证元素对是否满足 $a \vee b = 1$ 和 $a \wedge b = 0$。 - 布尔代数中补元唯一,但一般有界中可能无补元或多补元。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值