格、有界格、分配格

假设 ( L , ≼ ) (L, \preccurlyeq) (L,)为偏序集,如果对于任意 a , b ∈ L , a , b a, b\in L ,{a, b} a,bL,a,b 都存在上确界和下确界,则称 < L , ≼ > <L,\preccurlyeq> <L,> 为一个格 ( l a t t i c e ) (lattice) lattice

显然上确界和下确界有唯一性

上确界 L ∪ B ( a , b ) L \cup B({a, b}) LB(a,b)记作a ∨ \lor b,称之为a与b的并 ( j o i n ) (join) join

下确界 G ∩ B ( a , b ) G\cap B({a, b}) GB(a,b)记作a ∧ \land b,称之为a与b的交 ( m e e t ) (meet) meet

最大元、最小元

最大元:指偏序集的子集中不小于一切的元素
最小元:指偏序集的子集中不大于一切的元素

极大元、极小元

极大元:指偏序集中没有比它更大的可比较的元素
极小元:指偏序集中没有比它更小的可比较的元素

有界格

存在最大元和最小元的格称为有界格。

补元

< L , ≼ > <L,≼> <L,>是有界格,a,b是L中的两个元,若 a ∨ b = 1 , a ∧ b = 0 a∨b=1,a∧b=0 ab=1,ab=0,则称a是b的补元或b是a的补元,或称a和b互为补元.

a ∨ b = 1 a \lor b=1 ab=1意思是 a 和 b a和b ab向上走只有一个共同点 1 1 1.
a ∧ b = 1 a \land b=1 ab=1意思是 a 和 b a和b ab向下走只有一个共同点 0 0 0.

分配格

满足分配率的即为分配格

对于格的任意元素x,y和z,均有 x ∧ ( y ∨ z ) = ( x ∧ y ) ∨ ( x ∧ z ) x∧(y∨z)=(x∧y)∨(x∧z) x(yz)=(xy)(xz)。由于格中结运算和交运算的对称性,上述条件等价于 x ∨ ( y ∧ z ) = ( x ∨ y ) ∧ ( x ∨ z ) x∨(y∧z)=(x∨y)∧(x∨z) x(yz)=(xy)(xz),当 L L L为分配格时,交运算对于结运算满足分配律,而且反之亦真。
布尔格、除数格、理想格、链等均为分配格。

判断

有界格中的某元的补元不止一个。则它不是分配格 √ \surd

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
为了证明 $i\max\min$ 是分配格,我们需要证明它满足交换律、结合律、存在最大元和最小元以及对偶律。 首先证明交换律和结合律。对于任意三个元素 $x, y, z \in L$,有: $$ \begin{aligned} (x \max\min y) \max\min z &= (\max\{x, y\} \min\{x, y\}) \max\min z \\ &= (\max\{\max\{x, y\}, \min\{x, y\}, z\}) \min\{\max\{\max\{x, y\}, \min\{x, y\}, z\}\} \\ &= (x \max\min z) \max\min (y \max\min z) \end{aligned} $$ 这证明了 $i\max\min$ 满足交换律和结合律。 接下来证明存在最大元和最小元。我们将 $L$ 中的任意两个元素 $x$ 和 $y$ 相比较,有以下四种情况: - $x \leq y$,则 $x\max\min y = x$,$y\max\min x = y$; - $y \leq x$,则 $x\max\min y = y$,$y\max\min x = x$; - $x = y$,则 $x\max\min y = x = y$; - $x$ 和 $y$ 不可比,即既不满足 $x \leq y$ 也不满足 $y \leq x$,则 $x\max\min y$ 和 $y\max\min x$ 均未定义。 因此,$L$ 中的最大元是 $\max L$,最小元是 $\min L$,它们分别满足: $$ \begin{aligned} x \max\min \max L &= \max L, \quad \forall x \in L \\ \min L \max\min x &= \min L, \quad \forall x \in L \end{aligned} $$ 最后证明对偶律。设 $L^\mathrm{op}$ 是 $L$ 的对偶,$x, y \in L$,则: $$ \begin{aligned} x \max\min y &= \max\{x, y\} \min\{x, y\} \\ &= \min\{x^\mathrm{op}, y^\mathrm{op}\} \max\{x^\mathrm{op}, y^\mathrm{op}\} \\ &= y^\mathrm{op} \max\min x^\mathrm{op} \end{aligned} $$ 因此,$i\max\min$ 满足对偶律。综上所述,$i\max\min$ 是分配格

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值