Lora训练SD1.5与SDXL

1.基本操作

在PyCharm中设置源路径:在使用PyCharm时,将文件设置为源路径是确保项目组织和代码可访问性的关键步骤。首先,这一设置能确保Python的模块导入路径正确,从而避免“模块未找到”的错误,确保项目中的各个模块和包可以相互导入。其次,源路径设置使得PyCharm能够更好地理解项目结构,提供更准确的代码补全、快速导航和重构功能,显著提升开发效率。源路径的正确配置还支持PyCharm进行更有效的代码检查和分析,帮助提前发现潜在问题,提高代码质量。明确的源路径有助于保持项目结构的清晰和有序,方便团队协同开发和维护,尤其在大型项目中,这可以减少路径管理的混乱。

此外,在运行测试或脚本时,源路径设置确保PyCharm能够正确找到所需的模块和包,避免运行失败。对于使用虚拟环境或依赖管理工具的项目,源路径设置有助于PyCharm正确识别和配置环境,确保项目依赖能够正确安装和使用。总之,通过设置源路径,开发者可以大幅提高代码编写、调试和维护的效率,确保项目的稳定性和可扩展性。

图10 设置项目文件为源文件

确认项目所在环境正确:在PyCharm中确认并设置虚拟环境非常重要,因为它确保每个项目的依赖独立,避免了不同项目之间的冲突,保证开发和生产环境的一致性。这有助于团队协作,简化部署流程,并使管理和升级依赖更加灵活安全。虚拟环境还支持兼容性测试,防止系统环境污染,并充分利用PyCharm的功能,提高开发效率和项目质量。通过虚拟环境,开发者能确保项目运行环境的稳定性和可控性。

图11 检查Pycharm当前项目所使用conda环境

1.1数据准备

在预先训练之前要准备自己想要达成微调效果的数据集,这里我们以一组男孩的数据为例子,数据形式如下图所示:

图12 原始数据集

这里的数据集中首先要保证图像的长宽比一致,也就是需要对图像的尺寸进行预处理,由于获取的原始数据已经是一致的,这里不做更改,接下来需要对图像中内容进行文本描述并记录在txt文件中,文件名要与图像名一致,这就需要进行以下操作:

1、运行lora-script中的gui.py文件,会得到以下界面,接下来的操作将在web界面中进行。在此界面中有多种不同的训练方式,在使用界面话训练中的SD训练只需要使用Lora训练的新手训练即可,其中的Tensorboard一栏可以在训练完成后查看损失在每一个epoch训练中的损失变化折线图。WD1.4标签器用于对图像数据进行标注(这里的标注是分析描述图像中内容信息,形成一个文本文件)。

运行gui.py文件界面

2、选择WD1.4标签器

在标签器中填入需要处理的文件路径,设置好阈值、tagger模型、是否使用空格代替下划线、是否对结果中的括号进行转义处理、是否递归搜索子文件夹图片、存在识别的Tag文件处理(以上操作均可以使用默认值,不做改动即可)。点击右下角的启动按钮即可对文件中的图像进行标注操作。

图14 标注运行提示

出现以上命令框消息表示正在处理中&#

### SDXL LoRA 模型图像训练的数据预处理方法 对于SDXL LoRA模型,在准备用于训练的图像数据时,需遵循一系列特定的预处理步骤以确保最佳性能和结果质量。 #### 图像尺寸调整 为了使输入的一致性和提高计算效率,所有用于训练的原始图片应被重新缩放至统一大小。通常情况下,推荐使用51512像素作为标准分辨率[^1]。这一步骤可以通过Python中的PIL库轻松实现: ```python from PIL import Image import os def resize_images(input_folder, output_folder, size=(512, 512)): if not os.path.exists(output_folder): os.makedirs(output_folder) for filename in os.listdir(input_folder): img_path = os.path.join(input_folder, filename) with Image.open(img_path) as img: resized_img = img.resize(size, Image.ANTIALIAS) save_path = os.path.join(output_folder, filename) resized_img.save(save_path) ``` #### 数据增强 通过应用随机变换来扩充数据集可以有效防止过拟合并提升泛化能力。常见的操作包括旋转、翻转以及色彩抖动等。这些功能同样可以在PyTorch torchvision.transforms模块下找到现成的方法[^2]。 ```python import torch from torchvision import transforms transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2), ]) tensor_image = transform(tensor_image) ``` #### 文件组织结构 按照指定路径存储经过预处理后的图像文件有助于简化后续加载过程,并保持良好的项目管理习惯。具体来说,应该将训练素材放置于`/data/models/Train/`目录之下。此外,建议创建额外的子文件夹分别存放不同类别的样本,以便更好地分类管理和检索。 #### 清洗筛选 去除不符合要求或存在质量问题的照片至关重要。例如,模糊不清、严重失真或是含有过多噪声干扰的内容都应当予以剔除。这一环节可能涉及人工审查配合自动化工具共同完成,从而保证最终进入训练阶段的数据具备较高的可用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值