【最大公约数 GCD】 --- 常用四大算法(辗转相除法,穷举法,更相减损法,Stein算法)

1. 辗转相除法(又名欧几里德算法)

欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数

  • 定义: gcd(a,b) 为整数 a 与 b 的最大公约数
  • 引理:gcd(a,b)=gcd(b,a%b)
  • 证明:
    设 r=a%b , c=gcd(a,b)
    则 a=xc , b=yc , 其中x , y互质
    r=a%b=a-pb=xc-pyc=(x-py)c
    而b=yc
    可知:y 与 x-py 互质
  • 证明:
    假设 y 与 x-py 不互质
    设 y=nk , x-py=mk , 且 k>1 (因为互质)
    将 y 带入可得
    x-pnk=mk
    x=(pn+m)k
    则 a=xc=(pn+m)kc , b=yc=nkc
    那么此时 a 与 b 的最大公约数为 kc 不为 k
    与原命题矛盾,则 y 与 x-py 互质
    因为 y 与 x-py 互质,所以 r 与 b 的最大公约数为 c
    即 gcd(b,r)=c=gcd(a,b)
    得证。

当a%b=0时,gcd(a,b)=b

  • 算法过程为: 前提:设两数为a,b设其中a 做被除数,b做除数,temp为余数
  1. 大数放a中、小数放b中;
  2. 求a/b的余数;
  3. 若temp=0则b为最大公约数;
  4. 如果temp!=0则把b的值给a、temp的值给a;
  5. 返回第二步;
  • 代码:
int gcd(int a,int b)
{
	int temp;
	while(b!=0)
	{
		temp=a%b;
		a=b;
		b=temp;
	}
	return a;
}

如果你想要效率更高的gcd算法,那么我们可以通过位运算来实现:

  • 代码(位运算实现)
int gcd(int a,int b)
{
    while(b^=a^=b^=a%=b);
    return a;
}

2. 穷举法(也称枚举法)

穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数。

int divisor(int a,int b)
{
	int temp;
	temp=(a>b)?b:a;//通过较小的值枚举有利于算法的效率提高
	while(temp>0)
	{
		if(a%temp==0&&b%temp==0)
			break;
		temp--;
	}
	return(temp);
}

3. 更相减损法 (又名辗转相减法)

更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
翻译成现代语言如下:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。所以更相减损法也叫等值算法。

int gcd(int a,int b)
{		
	while(a != b)
	{
		if(a>b)
		{
			a = a - b;
		}
		else 
		{
			b = b - a;
		}
	}
	return a;
}

4. Stein算法

欧几里德算法是计算两个数最大公约数的传统算法,无论从理论还是从实际效率上都是很好的。但是却有一个致命的缺陷,这个缺陷在素数比较小的时候一般是感觉不到的,只有在大素数时才会显现出来:一般实际应用中的整数很少会超过64位(当然现在已经允许128位了),对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,比如说RSA加密算法至少要求500bit密钥长度,设计这样的程序迫切希望能够抛弃除法和取模。

Stein算法很好的解决了欧几里德算法中的这个缺陷,Stein算法只有整数的移位和加减法。下面就来说一下Stein算法的原理:

  • 若a和b都是偶数,则记录下公约数2,然后都除2(即右移1位);
  • 若其中一个数是偶数,则偶数除2,因为此时2不可能是这两个数的公约数了
  • 若两个都是奇数,则a = |a-b|,b = min(a,b),因为若d是a和b的公约数,那么d也是|a-b|和min(a,b)的公约数。

这里面可能就第三句话难理解一点,这里进行简单的证明:
不妨设奇数A>B,A和B的公约数为X,即A=jX,B=kX,其中j,k均为正整数且j>k。
A−B=(j−k)X>
A−B=(j−k)X
因为j,k均为整数,所以X也是A-B的公约数。
min(A,B)=B
所以A-B与min(A,B)公约数相同,因为A,B都是奇数,所以A-B必然是偶数,偶数又可以二除移位了。

*代码:

int SteinGCD(int a, int b) 
{
    int acc = 0;
    while ((a & 1) == 0 && (b & 1) == 0) 
    {
        acc++;
        a >>= 1;
        b >>= 1;
    }
    while ((a & 1) == 0) a >>= 1;
    while ((b & 1) == 0) b >>= 1;
    if (a < b) { int t = a; a = b; b = t; }
    while ((a = (a - b) >> 1) != 0) {
        while ((a & 1) == 0) a >>= 1;
        if (a < b) { int t = a; a = b; b = t; }
    }
    return b << acc;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值