蓝桥杯 算法提高 转圈游戏 JAVA

原题描述

  1. 问题描述

n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,…,依此类 推。
  游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小 伙伴走到第 m+1 号位置,…,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第 n-m+1 号位置上的小伙伴走到第 1 号位置,…,第 n-1 号位置上的小伙伴顺时针走到第 m-1 号位置。
  现在,一共进行了 10k 轮,请问 x 号小伙伴最后走到了第几号位置。

  1. 输入格式

输入共 1 行,包含 4 个整数 n、m、k、x,每两个整数之间用一个空格隔开。

  1. 输出格式

输出共 1 行,包含 1 个整数,表示 10k 轮后 x 号小伙伴所在的位置编号。

  1. 数据规模和约定

对于 30%的数据,0 < k < 7;
  对于 80%的数据,0 < k < 10^7;
  对于 100%的数据,1 < n < 1,000,000,0 < m < n,1 ≤ x ≤ n,0 < k < 10^9。

解题思路

这不是一个简单的转圈游戏,不使用快速幂,只能通过前几个测试
解此题,应知道何为快速幂

快速幂,请先参考我的快速幂博客,链接如下
JAVA快速幂链接

进入正题
此题思路其实很简单即(x+m* 2k)%n;,因为x是原本的位置,m2k是要移动的位置,然后求模于n就是最后的位置,不理解得话先学习下循环队列。
难点
由于k的值0 < k < 109。如果直接计算2k的值会超出int或long所能表示的范围。
在本题中,无论在哪个位置,只要移动n次,x就会回到原位置,所以m
2k=m
2k%n,所以我们可以通过快速幂的方法,计算出2k%n。

JAVA代码

import java.util.Scanner;

public class Main{
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		int n=sc.nextInt();
		int m=sc.nextInt();
		int k=sc.nextInt();
		int x=sc.nextInt();
		int mid=pow(10,k,n);
		int res=(x+m*mid)%n;
		System.out.print(res);
		
		
	}
	static int pow(int a,int b,int n) {//快速幂算法
		int ans=1;
		int base=a;
		while(b!=0) {
			if((b&1)!=0) {//最后一位进行位运算,如果b的二进制最后为1,则结果为1
				ans=ans*base;
			}
			base=(base*base)%n;//不断进行求模,缩小结果的大小
			b=b>>1;
			ans=ans%n;
		}
		
		return ans;
		
	}
}


运行结果

在这里插入图片描述

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值