Zermelo-Fraenkel体系(2)——正规公理

本文介绍了Zermelo-Fraenkel(ZF)集合论体系中的Foundation Axiom,并详细探讨了偏序关系的概念,包括全序关系、最大元、最小元等。接着,作者解释了超限归纳法及其应用,并阐述了良序集的ϵ图像及其性质,展示了集合论中的序数理论。
摘要由CSDN通过智能技术生成

1. 前言

本文的预备文章为

  • 一般拓扑/数学基础——数理逻辑
  • 一般拓扑/Zermelo-Fraenkel体系(1)

在介绍了ZF体系的前八条公理之后,我们介绍ZF体系的最后一条公理——Foundation axiom

Foundation axiom. ∀ x ∃ y ( y ∈ x ∧ y ∩ x = ∅ ) \forall x \exists y(y\in x \wedge y\cap x=\empty) xy(yxyx=).

这条公理是ZF体系中看起来最不自然的公理,读者之后会看到,这条公理事实上划定了集合的范围,完全地刻画了集合应该长什么样。

2. 偏序关系

定义1(二元关系). X X X是一个集合, R \mathcal{R} R X × X X\times X X×X的子集,则称 R \mathcal{R} R X X X的一个二元关系。 R \mathcal{R} R中的元素 ( a , b ) (a,b) (a,b)通常被记为 a R b a\mathcal{R}b aRb

在二元关系 ( X , R ) (X,\mathcal{R}) (X,R)里通常有四个可以额外添加的性质:

  • 自反性。即对任何 x ∈ X x\in X xX,有 ( x , x ) ∈ R (x,x)\in \mathcal{R} (x,x)R,或写成 x R x x\mathcal{R}x xRx。换句话说,对角(diagnol) Δ X = { ( a , a ) : a ∈ X } ⊂ R \Delta_X=\{(a,a):a\in X\}\subset \mathcal{R} ΔX={ (a,a):aX}R
  • 传递性。即如果 x R y x\mathcal{R}y xRy y R z y\mathcal{R}z yRz,则 x R z x\mathcal{R}z xRz
  • 对称性。即如果 x R y x\mathcal{R}y xRy,则 y R x y\mathcal{R}x yRx
  • 反对称性。即如果 x R y x\mathcal{R}y xRy y R x y\mathcal{R}x yRx,则 x = y x=y x=y

定义2(偏序关系). X X X是一个集合, R \mathcal{R} R X X X上的二元关系。如果 R \mathcal{R} R满足自反性,传递性和反对称性,则称 R \mathcal{R} R X X X上的偏序关系,记为 ≤ \leq

定义3(全序关系). X X X是一个集合, ≤ \leq X X X上的一个偏序关系,如果任何 x , y ∈ X x,y\in X x,yX,都有 x ≤ y x\leq y xy y ≤ x y\leq x yx,则称 ≤ \leq 是一个全序关系。

定义4(偏序集中的术语). ( X , ≤ ) (X,\leq) (X,)是一个偏序集, A ⊂ X A\subset X AX是子集,则

  • a ∈ A a\in A aA称为 A A A的最大元,如果对任何 b ∈ A b\in A bA,有 b ≤ a b\leq a ba
  • a ∈ A a\in A aA称为 A A A的最小元,如果对任何 b ∈ A b\in A bA,有 a ≤ b a\leq b ab
  • a ∈ A a\in A aA称为 A A A的极大元,如果对任何 b ∈ A b\in A bA,要么 a , b a,b a,b无法比较,要么 b ≤ a b\leq a ba
  • a ∈ A a\in A aA称为 A A A的极小元,如果对任何 b ∈ A b\in A bA,要么 a , b a,b a,b无法比较,要么 a ≤ b a\leq b ab
  • a ∈ X a\in X aX称为 A A A的上界,如果对任何 b ∈ A b\in A bA,有 b ≤ a b\leq a ba
  • a ∈ X a\in X aX称为 A A A的下界,如果对任何 b ∈ A b\in A bA,有 a ≤ b a\leq b ab
  • a ∈ X a\in X aX称为 A A A的上确界,如果 a a a A A A的所有上界里的最小元。
  • a ∈ X a\in X aX称为 A A A的下确界,如果 a a a A A A的所有下界里的最大元。

如果 X X X的有上界的非空子集都有上确界,则称 ( X , ≤ ) (X,\leq) (X,)是序完备的。

下面是一些有趣的例子

例子1.

  • 考虑 R \mathbb{R} R上通常的顺序 ≤ \leq ,在这里我不想介入关于实数系统和通常的顺序的定义,这将占用很大的篇幅,而且与我们的主题无关。不难看出 ( R , ≤ ) (\mathbb{R},\leq ) (R,)确实是偏序关系,而且任何两个数都能比较,故 ( R , ≤ ) (\mathbb{R},\leq ) (R,)是全序关系,且任何 R \mathbb{R} R的有上界的非空子集都有上确界,故 ( R , ≤ ) (\mathbb{R},\leq ) (R,)是序完备的。
  • N \mathbb{N} N是包括 0 0 0的自然数,定义 m ≤ d n m\leq_d n mdn当且仅当 m ∣ n m|n mn,即存在自然数 k k k使得 n = m k n=mk n=mk。这是一个偏序关系,且 0 0 0在这个偏序下最大, 1 1 1最小。如图所示
    在这里插入图片描述
    S S S
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值