1. 前言
本文的预备文章为
一般拓扑/数学基础——数理逻辑
一般拓扑/Zermelo-Fraenkel体系(1)
在介绍了ZF体系的前八条公理之后,我们介绍ZF体系的最后一条公理——Foundation axiom
Foundation axiom.
∀ x ∃ y ( y ∈ x ∧ y ∩ x = ∅ ) \forall x \exists y(y\in x \wedge y\cap x=\empty) ∀x∃y(y∈x∧y∩x=∅).
这条公理是ZF体系中看起来最不自然的公理,读者之后会看到,这条公理事实上划定了集合的范围,完全地刻画了集合应该长什么样。
2. 偏序关系
定义1(二元关系).
设 X X X是一个集合, R \mathcal{R} R是 X × X X\times X X×X的子集,则称 R \mathcal{R} R是 X X X的一个二元关系。 R \mathcal{R} R中的元素 ( a , b ) (a,b) (a,b)通常被记为 a R b a\mathcal{R}b aRb。
在二元关系 ( X , R ) (X,\mathcal{R}) (X,R)里通常有四个可以额外添加的性质:
- 自反性。即对任何 x ∈ X x\in X x∈X,有 ( x , x ) ∈ R (x,x)\in \mathcal{R} (x,x)∈R,或写成 x R x x\mathcal{R}x xRx。换句话说,对角(diagnol) Δ X = { ( a , a ) : a ∈ X } ⊂ R \Delta_X=\{(a,a):a\in X\}\subset \mathcal{R} ΔX={ (a,a):a∈X}⊂R。
- 传递性。即如果 x R y x\mathcal{R}y xRy且 y R z y\mathcal{R}z yRz,则 x R z x\mathcal{R}z xRz。
- 对称性。即如果 x R y x\mathcal{R}y xRy,则 y R x y\mathcal{R}x yRx。
- 反对称性。即如果 x R y x\mathcal{R}y xRy且 y R x y\mathcal{R}x yRx,则 x = y x=y x=y。
定义2(偏序关系).
设 X X X是一个集合, R \mathcal{R} R是 X X X上的二元关系。如果 R \mathcal{R} R满足自反性,传递性和反对称性,则称 R \mathcal{R} R是 X X X上的偏序关系,记为 ≤ \leq ≤。
定义3(全序关系).
设 X X X是一个集合, ≤ \leq ≤是 X X X上的一个偏序关系,如果任何 x , y ∈ X x,y\in X x,y∈X,都有 x ≤ y x\leq y x≤y或 y ≤ x y\leq x y≤x,则称 ≤ \leq ≤是一个全序关系。
定义4(偏序集中的术语).
设 ( X , ≤ ) (X,\leq) (X,≤)是一个偏序集, A ⊂ X A\subset X A⊂X是子集,则
- a ∈ A a\in A a∈A称为 A A A的最大元,如果对任何 b ∈ A b\in A b∈A,有 b ≤ a b\leq a b≤a。
- a ∈ A a\in A a∈A称为 A A A的最小元,如果对任何 b ∈ A b\in A b∈A,有 a ≤ b a\leq b a≤b。
- a ∈ A a\in A a∈A称为 A A A的极大元,如果对任何 b ∈ A b\in A b∈A,要么 a , b a,b a,b无法比较,要么 b ≤ a b\leq a b≤a。
- a ∈ A a\in A a∈A称为 A A A的极小元,如果对任何 b ∈ A b\in A b∈A,要么 a , b a,b a,b无法比较,要么 a ≤ b a\leq b a≤b。
- a ∈ X a\in X a∈X称为 A A A的上界,如果对任何 b ∈ A b\in A b∈A,有 b ≤ a b\leq a b≤a。
- a ∈ X a\in X a∈X称为 A A A的下界,如果对任何 b ∈ A b\in A b∈A,有 a ≤ b a\leq b a≤b。
- a ∈ X a\in X a∈X称为 A A A的上确界,如果 a a a是 A A A的所有上界里的最小元。
- a ∈ X a\in X a∈X称为 A A A的下确界,如果 a a a是 A A A的所有下界里的最大元。
如果 X X X的有上界的非空子集都有上确界,则称 ( X , ≤ ) (X,\leq) (X,≤)是序完备的。
下面是一些有趣的例子
例子1.
- 考虑 R \mathbb{R} R上通常的顺序 ≤ \leq ≤,在这里我不想介入关于实数系统和通常的顺序的定义,这将占用很大的篇幅,而且与我们的主题无关。不难看出 ( R , ≤ ) (\mathbb{R},\leq ) (R,≤)确实是偏序关系,而且任何两个数都能比较,故 ( R , ≤ ) (\mathbb{R},\leq ) (R,≤)是全序关系,且任何 R \mathbb{R} R的有上界的非空子集都有上确界,故 ( R , ≤ ) (\mathbb{R},\leq ) (R,≤)是序完备的。
- 设 N \mathbb{N} N是包括 0 0 0的自然数,定义 m ≤ d n m\leq_d n m≤dn当且仅当 m ∣ n m|n m∣n,即存在自然数 k k k使得 n = m k n=mk n=mk。这是一个偏序关系,且 0 0 0在这个偏序下最大, 1 1 1最小。如图所示
设 S S S是