拓扑空间中的收敛性

本文探讨了在拓扑空间中,如何通过网和滤子的概念来描述和刻画拓扑性质,特别是在序列无法完全胜任的场景下。文章首先介绍了网的概念,作为序列的推广,接着阐述了滤子的定义,尽管更抽象,但在某些证明中更为便利。最后,文章指出滤子和网在一定条件下是等价的,为理解拓扑空间的收敛性提供了新的视角。
摘要由CSDN通过智能技术生成

1. 前言

我们假设读者已经了解点集拓扑的一些基础概念,例如开集,邻域,紧空间等等,我们现在讨论拓扑空间中的收敛性
我们知道,在度量空间中,许多拓扑性质可以用序列刻画,例如

  • 在度量空间 X X X中,集合 A ⊂ X A\subset X AX,则 A A A的闭包可以被序列刻画:
    A ‾ = { x ∈ X : 存 在 序 列 x n ∈ A , 且 d ( x n , x ) → 0 } . \overline{A}=\{x\in X:存在序列x_n\in A,且d(x_n,x)\rightarrow 0\}. A={ xX:xnAd(xn,x)0}.

但是在一般的拓扑空间中,序列这个概念已经不足以刻画拓扑性质了,例如

(第一不可数序,the first uncountable ordinal) 我们在文章集合与拓扑/第一不可数序中介绍了第一不可数序 ω 1 \omega_1 ω1,在序拓扑中, ω 1 = s e g   y 0 ⊂ ( − ∞ , y 0 ] \omega_1=\mathbf{seg}\,y_0\subset (-\infty,y_0] ω1=segy0(,y0],验证:

  • ω 1 \omega_1 ω1 ( − ∞ , y 0 ] (-\infty,y_0] (,y0]中是序列闭的,即任何收敛序列 ( x n ) ⊂ ω 1 (x_n)\subset \omega_1 (xn)ω1的极限 x x x仍在 ω 1 \omega_1 ω1中。
  • ω 1 \omega_1 ω1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值