分布理论

分布理论起源于19世纪的Green函数,由Sobolev在1936年提出广义函数概念,经Schwartz发展成现代数学分支。拓扑线性空间是分布理论的基础,其定义涉及线性结构与拓扑结构的相容性。预备知识包括点集拓扑,特别是序列、网和滤子在描述拓扑性质中的角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

分布(distribution)概念的起源可以追溯到1830年,当时开始使用Green函数来解常微分方程,但是当时还只是零碎的知识点,并未形成完整的体系。根据Kolmogorov和Fomin的整理,Sergi Sobolev于1936年在解二阶双曲微分方程时正式提出广义函数的概念,该想法在40年代被Laurent Schwartz正式发展成如今称为“分布理论”的数学理论。通过Schwartz的自传,他类比电量的分布,给这种广义函数命名为“分布”。Gårding在1997年评论道,虽然Schwartz在1951年出版的巨著《Theorie des distributions》的想法不是新的,但通过Schwarz的努力和强烈的信念,使得分布理论成为整个分析学科的基石,发挥了强大的威力。

------摘自Wikipedia.

拓扑线性空间是Banach空间的推广,分布理论是建立在拓扑线性空间的基础上的,然而,拓扑线性空间是一个大的课题,我们不可能对其详细的介绍,因此我们只介绍对我们有用的那部分知识。在此之前,由于我还没写点集拓扑方面的Notes,因此我们不得不补充一些拓扑的知识。

2. 预备知识

我们假设读者已经了解点集拓扑的一些基础概念,例如开集,邻域,紧空间等等,我们现在讨论拓扑空间中的收敛性
我们知道,在度量空间中,许多拓扑性质可以用序列刻画,例如

  • 在度量空间 X X X中,集合 A ⊂ X A\subset X AX,则 A A A的闭包可以被序列刻画:
    A ‾ = { x ∈ X : 存 在 序 列 x n ∈ A , 且 d ( x n , x ) → 0 } . \overline{A}=\{x\in X:存在序列x_n\in A,且d(x_n,x)\rightarrow 0\}. A={ xX:xnAd(xn,x)0}.

但是在一般的拓扑空间中,序列这个概念已经不足以刻画拓扑性质了,例如

(第一不可数序,the first uncountable ordinal) 我们在文章集合与拓扑/第一不可数序中介绍了第一不可数序 ω 1 \omega_1 ω1,在序拓扑中, ω 1 = s e g   y 0 ⊂ ( − ∞ , y 0 ] \omega_1=\mathbf{seg}\,y_0\subset (-\infty,y_0] ω1=segy0(,y0],验证:

  • ω 1 \omega_1 ω
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值